期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
聚(ε-己内酯)-多肽共聚物胶束增强抗生素的抗菌活性 被引量:2
1
作者 陈灵珊 洪苑秀 +2 位作者 贺石生 范震 杜建忠 《物理化学学报》 SCIE CAS CSCD 北大核心 2021年第10期78-86,共9页
细菌感染对人类健康构成了严重威胁,而传统抗生素治疗可能导致如胃病、细菌耐药等一系列副作用。因此,亟需发展提高抗生素抗菌效率的新方法。在本文中,我们通过氨基酸环内酸酐和ε-己内酯开环聚合合成了多肽基的聚合物[PCL_(34)-b-PGA_(... 细菌感染对人类健康构成了严重威胁,而传统抗生素治疗可能导致如胃病、细菌耐药等一系列副作用。因此,亟需发展提高抗生素抗菌效率的新方法。在本文中,我们通过氨基酸环内酸酐和ε-己内酯开环聚合合成了多肽基的聚合物[PCL_(34)-b-PGA_(30)-b-P(Lys_(16)-stat-Phe_(12))]。在碱性环境中,此聚合物能够自组装成带负电荷的胶束(其zeta电位值为−26.7 mV)。通过透射电子显微镜和动态光散射可以证实组装体的胶束结构。此胶束具有药物缓释的特性,并且胶束上含有的抗菌多肽链段能够有效杀死细菌,因此该胶束能够很大程度上提高抗生素的抗菌效率。实验证实该载药胶束对革兰氏阴性菌(大肠杆菌)和革兰氏阳性菌(金黄色葡萄球菌)均具有较好的抗菌活性,最小抑菌浓度值分别为7.8和18.2μg·mL^(−1)。这种胶束包载妥布霉素的载药率和载药量分别为24.3%和5.2%。因此,胶束中实际含有的抗生素量为0.4和0.9μg·mL^(−1),小于妥布霉素的最小抑菌浓度值。总的来说,该胶束有望大幅降低抗生素的使用量,并减少临床上抗生素过量使用造成的副作用。 展开更多
关键词 抗生素 自组装 多肽 聚合物胶束 抗菌性 缓释
下载PDF
Bioinspired MXene-Based User-Interactive Electronic Skin for Digital and Visual Dual-Channel Sensing 被引量:6
2
作者 Wentao Cao Zheng Wang +5 位作者 Xiaohao Liu Zhi Zhou Yue Zhang shisheng he Daxiang Cui Feng Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期228-245,共18页
User-interactive electronic skin(e-skin) that could convert mechanical stimuli into distinguishable outputs displays tremendous potential for wearable devices and health care applications. However, the existing device... User-interactive electronic skin(e-skin) that could convert mechanical stimuli into distinguishable outputs displays tremendous potential for wearable devices and health care applications. However, the existing devices have the disadvantages such as complex integration procedure and lack of the intuitive signal display function. Here, we present a bioinspired user-interactive e-skin, which is simple in structure and can synchronously achieve digital electrical response and optical visualization upon external mechanical stimulus. The e-skin comprises a conductive layer with a carbon nanotubes/cellulose nanofibers/MXene nanohybrid network featuring remarkable electromechanical behaviors, and a stretchable elastomer layer, which is composed of silicone rubber and thermochromic pigments. Furthermore, the conductive nanohybrid network with outstanding Joule heating performance can generate controllable thermal energy under voltage input and then achieve the dynamic coloration of silicone-based elastomer. Especially, such an innovative fusion strategy of digital data and visual images enables the e-skin to monitor human activities with evermore intuition and accuracy. The simple design philosophy and reliable operation of the demonstrated e-skin are expected to provide an ideal platform for next-generation flexible electronics. 展开更多
关键词 MXene Electronic skin Electromechanical behavior Joule heating Visualization
下载PDF
Glycerol solutions of highly concentrated biomineral counter-ions towards water-responsive mineralization: Demonstration on bacterial cellulose and its application in hard tissue repair
3
作者 Yunfei Zhao Xiaohao Liu +8 位作者 Zhi Zhou Chaobo Feng Nan Luo Jiajun Yan Shuo Tan Yang Lu Feng Chen Bing-Qiang Lu shisheng he 《Nano Research》 SCIE EI CSCD 2024年第3期2154-2163,共10页
Mineralization has found widespread use in the fabrication of composite biomaterials for hard tissue regeneration.The current mineralization processes are mainly carried out in neutral aqueous solutions of biomineral ... Mineralization has found widespread use in the fabrication of composite biomaterials for hard tissue regeneration.The current mineralization processes are mainly carried out in neutral aqueous solutions of biomineral counter-ions(a pair of cation and anion that form the corresponding minerals at certain conditions),which are stable only at very low concentrations.This typically results in inefficient mineralization and weak control over biomineral formation.Here,we find that,in the organic solvent glycerol,a variety of biomineral counter-ions(e.g.,Ca/PO_(4),Ca/CO_(3),Ca/SO_(4),Mg/PO_(4),or Fe/OH)corresponding to distinct biominerals at significantly high concentrations(up to hundreds-fold greater than those of simulated body fluid(SBF))are able to form translucent and stable solutions(mineralizing solution of highly concentrated counter-ions(MSCIs)),and mineralization can be triggered upon them with external solvents(e.g.,water or ethanol).Furthermore,with pristine bacterial cellulose(BC)membrane as a model,we demonstrate an effective and controllable mineralization performance of MSCIs on organic substrates.This approach not only forms the homogeneous biominerals on the BC fibers and in the interspaces,but also provides regulations over mineralization rate,mineral content,phase,and dopants.The resulting mineralized BC membranes(MBCs)exhibit high cytocompatibility and favor the proliferation of rat bone marrow mesenchymal stem cells(rBMSC).Following this,we prepare a mineralized bone suture(MBS)from MBC for non-weight bearing bone fixation,which then is tested on a rabbit median sternotomy model.It shows firm fixation of the rabbit sternum without causing discernible toxicity or inflammatory response.This study,by extending the mineralization to the organic solution system of highly concentrated counter-ions,develops a promising strategy to design and build targeted mineral-based composites. 展开更多
关键词 BIOMINERALIZATION organic solvent bacterial cellulose(BC) hard tissue repair
原文传递
Amorphous calcium magnesium phosphate nanocomposites with superior osteogenic activity for bone regeneration
4
作者 Yingying Jiang Shuo Tan +11 位作者 Jianping Hu Xin Chen Feng Chen Qianting Yao Zhi Zhou Xiansong Wang Zifei Zhou Yunshan Fan Junjian Liu Yize Lin Lijia Liu shisheng he 《Regenerative Biomaterials》 SCIE EI 2021年第6期249-259,共11页
The seek of bioactive materials for promoting bone regeneration is a challenging and longterm task.Functionalization with inorganic metal ions or drug molecules is considered effective strategies to improve the bioact... The seek of bioactive materials for promoting bone regeneration is a challenging and longterm task.Functionalization with inorganic metal ions or drug molecules is considered effective strategies to improve the bioactivity of various existing biomaterials.Herein,amorphous calcium magnesium phosphate(ACMP)nanoparticles and simvastatin(SIM)-loaded ACMP(ACMP/SIM)nanocomposites were developed via a simple co-precipitation strategy.The physiochemical property of ACMP/SIM was explored using transmission electron microscope(TEM),Fourier transform infrared spectroscopy(FTIR),powder X-ray diffraction(XRD)and highperformance liquid chromatograph(HPLC),and the role of Mg^(2+) in the formation of ACMP/SIM was revealed using X-ray absorption near-edge structure(XANES).After that,the transformation process of ACMP/SIM in simulated body fluid(SBF)was also tracked to simulate and explore the in vivo mineralization performance of materials.We find that ACMP/SIM releases ions of Ca^(2+),Mg^(2+)and PO_(4)^(3),when it is immersed in SBF at 37℃,and a phase transformation occurred during which the initially amorphous ACMP turns into self-assembled hydroxyapatite(HAP).Furthermore,ACMP/SIM displays high cytocompatibility and promotes the proliferation and osteogenic differentiation of MC3T3-E1 cells.For the in vivo studies,lamellar ACMP/SIM/Collagen scaffolds with aligned pore structures were prepared and used to repair a rat defect model in calvaria.ACMP/SIM/Collagen scaffolds show a positive effect in promoting the regeneration of calvaria defect after 12weeks.The bioactive ACMP/SIM nanocomposites are promising as bone repair materials.Considering the facile preparation process and superior in vitro/vivo bioactivity,the as-prepared ACMP/SIM would be a potential candidate for bone related biomedical applications. 展开更多
关键词 BIOMINERALIZATION bone materials synthesize biomaterial-cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部