The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,wh...The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,while the challenge associated with N_(2) activation highlights the demand for efficient electrocatalysts.Herein,we demonstrate that PdCu nanoparticles with different Pd/Cu ratios anchored on boron nanosheet(PdCu/B)behave as efficient NRR electrocatalysts toward NH_(3) synthesis.Theoretical and experimental results confirm that the highly efficient NH_(3) synthesis can be achieved by regulating the charge transfer between interfaces and forming a symmetry-breaking site,which not only alleviates the hydrogen evolution but also changes the adsorption configuration of N_(2) and thus optimizes the reaction pathway of NRR over the separated Pd sites.Compared with monometallic Pd/B and Cu/B,the PdCu/B with the optimized Pd/Cu ratio of 1 exhibits superior activity and selectivity for NH_(3) synthesis.This study provides new insight into developing efficient catalysts for small energy molecule catalytic conversion via regulating the charge transfer between interfaces and constructing symmetry-breaking sites.展开更多
基金National Key R&D Program of China,Grant/Award Number:2020YFA0710000National Natural Science Foundation of China,Grant/Award Numbers:22008170,21978200,22161142002,22121004。
文摘The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,while the challenge associated with N_(2) activation highlights the demand for efficient electrocatalysts.Herein,we demonstrate that PdCu nanoparticles with different Pd/Cu ratios anchored on boron nanosheet(PdCu/B)behave as efficient NRR electrocatalysts toward NH_(3) synthesis.Theoretical and experimental results confirm that the highly efficient NH_(3) synthesis can be achieved by regulating the charge transfer between interfaces and forming a symmetry-breaking site,which not only alleviates the hydrogen evolution but also changes the adsorption configuration of N_(2) and thus optimizes the reaction pathway of NRR over the separated Pd sites.Compared with monometallic Pd/B and Cu/B,the PdCu/B with the optimized Pd/Cu ratio of 1 exhibits superior activity and selectivity for NH_(3) synthesis.This study provides new insight into developing efficient catalysts for small energy molecule catalytic conversion via regulating the charge transfer between interfaces and constructing symmetry-breaking sites.