The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a co...The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS.展开更多
Compared with organic solar cells(OSCs) adopting conventional architecture,inverted OSCs have offered generally better stability,where Zn O is the most widely used electron transporting layer(ETL) material.For ZnO-bas...Compared with organic solar cells(OSCs) adopting conventional architecture,inverted OSCs have offered generally better stability,where Zn O is the most widely used electron transporting layer(ETL) material.For ZnO-based inverted OSCs,a welltuned interface of organic(active layer)-inorganic(Zn O film) with matched surface energy(γS) is critical for both high performance and high stability.In this work,two typical calixarenes,C4A and Bu C4A,were employed as the tuning agents to adjust this organic-inorganic interface for ZnO-based inverted OSCs.As a result,with PM6:L8-BO as the active layer,significantly promoted power conversion efficiencies(PCEs) from 17.14%(for ZnO) to 18.25%(for ZnO/C4A) and 17.80%(for ZnO/Bu C4A) were achieved.Photodynamic studies indicate that the enhanced performance is due to the faster charge extraction process,the suppressed recombination and more ideal internal electric field in ZnO/calixarene-based devices.In addition,wellmatched interface energy and more ordered molecular aggregation in active layer effectively improved photostability and thermal stability for ZnO/calixarene-based devices.These results indicate that calixarenes could act as effective modifying agents of ZnO to improve inverted OSCs’ performance and stability simultaneously,and likely also stimulate calixarenes’ and other macromolecules’ broader studies in other organic electronic devices.展开更多
Ternary organic photovoltaic(OPV)strategy is an effective but facile approach to enhance the photovoltaic performance for single-junction devices.Herein,a series of ternary OPVs were fabricated by employing a wide ban...Ternary organic photovoltaic(OPV)strategy is an effective but facile approach to enhance the photovoltaic performance for single-junction devices.Herein,a series of ternary OPVs were fabricated by employing a wide bandgap donor(PBDB-TF)and two acceptor-donor-acceptor(A-D-A)-type nonfullerene small molecule acceptors(NF-SMAs,called F-2 Cl and 3 TT-OCIC).As the third component,the near-infrared SMA,3 TT-OCIC,has complementary absorption spectrum,narrow bandgap and wellcompatible crystallization property to the host acceptor(F-2 Cl)for efficient ternary OPVs.With these,the optimal ternary devices yield significantly enhanced power conversion efficiency of 15.23%,one of the very few examples with PCE higher than15%other than Y6 systems.This is mainly attributed to the increased short-circuit current density of 24.92 m A cm^(-2) and dramatically decreased energy loss of 0.53 e V.This work presents a successful example for simultaneously improving current,minimizing energy loss and together with modifying the morphology of active layers in OPVs,which will contribute to the further construction of high performance ternary OPVs.展开更多
Photovoltaic cells are one of the most promising renewable energy sources to address energy and environmental issues.Amongst the many photovoltaic technologies,organic solar cells(OSCs)have numerous advantages,such as...Photovoltaic cells are one of the most promising renewable energy sources to address energy and environmental issues.Amongst the many photovoltaic technologies,organic solar cells(OSCs)have numerous advantages,such as low cost,light weight,semi-transparency,and flexibility.This last is a special merit of OSCs,arising due to the intrinsic flexibility of organic active layers.With promising applications in fields such as building-integrated photovoltaics and wearable electronics,flexible OSCs(F-OSCs)have developed rapidly,and significant process has been made in recent years.In this review,we summarize the recent progress in F-OSCs from the perspective of flexible transparent electrodes.In addition,large-area F-OSCs and their potential applications are briefly dis-cussed.Finally,challenges for the further development of F-OSCs are presented.展开更多
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2018YFC1704500)Tianjin Committee of Science and Technology of China(Grant No.21ZYJDJC00080)National Natural Science Foundation of China(Grant No.81872996).
文摘The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS.
基金supported by the Ministry of Science and Technology of China(MoST,2019YFA0705900)the National Natural Science Foundation of China(21935007,52025033,51873089)+1 种基金Tianjin city(20JCZDJC00740)111 Project(B12015)。
文摘Compared with organic solar cells(OSCs) adopting conventional architecture,inverted OSCs have offered generally better stability,where Zn O is the most widely used electron transporting layer(ETL) material.For ZnO-based inverted OSCs,a welltuned interface of organic(active layer)-inorganic(Zn O film) with matched surface energy(γS) is critical for both high performance and high stability.In this work,two typical calixarenes,C4A and Bu C4A,were employed as the tuning agents to adjust this organic-inorganic interface for ZnO-based inverted OSCs.As a result,with PM6:L8-BO as the active layer,significantly promoted power conversion efficiencies(PCEs) from 17.14%(for ZnO) to 18.25%(for ZnO/C4A) and 17.80%(for ZnO/Bu C4A) were achieved.Photodynamic studies indicate that the enhanced performance is due to the faster charge extraction process,the suppressed recombination and more ideal internal electric field in ZnO/calixarene-based devices.In addition,wellmatched interface energy and more ordered molecular aggregation in active layer effectively improved photostability and thermal stability for ZnO/calixarene-based devices.These results indicate that calixarenes could act as effective modifying agents of ZnO to improve inverted OSCs’ performance and stability simultaneously,and likely also stimulate calixarenes’ and other macromolecules’ broader studies in other organic electronic devices.
基金supported by the National Key Research and Development Program of China(2019YFA0705900,2016YFA0200200)the National Natural Science Foundation of China(21935007,51873089,51773095)+1 种基金Tianjin city(20JCZDJC00740,17JCJQJC44500)111 Project(B12015)。
文摘Ternary organic photovoltaic(OPV)strategy is an effective but facile approach to enhance the photovoltaic performance for single-junction devices.Herein,a series of ternary OPVs were fabricated by employing a wide bandgap donor(PBDB-TF)and two acceptor-donor-acceptor(A-D-A)-type nonfullerene small molecule acceptors(NF-SMAs,called F-2 Cl and 3 TT-OCIC).As the third component,the near-infrared SMA,3 TT-OCIC,has complementary absorption spectrum,narrow bandgap and wellcompatible crystallization property to the host acceptor(F-2 Cl)for efficient ternary OPVs.With these,the optimal ternary devices yield significantly enhanced power conversion efficiency of 15.23%,one of the very few examples with PCE higher than15%other than Y6 systems.This is mainly attributed to the increased short-circuit current density of 24.92 m A cm^(-2) and dramatically decreased energy loss of 0.53 e V.This work presents a successful example for simultaneously improving current,minimizing energy loss and together with modifying the morphology of active layers in OPVs,which will contribute to the further construction of high performance ternary OPVs.
基金The authors gratefully acknowledge the financial support from NSFC(52025033 and 21935007),MoST(2019YFA0705900)of China,Tianjin city(20JCZDJC00740),111 Project(B12015)Haihe Laboratory of Sustainable Chemical Transformations.
文摘Photovoltaic cells are one of the most promising renewable energy sources to address energy and environmental issues.Amongst the many photovoltaic technologies,organic solar cells(OSCs)have numerous advantages,such as low cost,light weight,semi-transparency,and flexibility.This last is a special merit of OSCs,arising due to the intrinsic flexibility of organic active layers.With promising applications in fields such as building-integrated photovoltaics and wearable electronics,flexible OSCs(F-OSCs)have developed rapidly,and significant process has been made in recent years.In this review,we summarize the recent progress in F-OSCs from the perspective of flexible transparent electrodes.In addition,large-area F-OSCs and their potential applications are briefly dis-cussed.Finally,challenges for the further development of F-OSCs are presented.