Aluminum-copper titanium di-boride [Al-4Cu-xTiB2] composite (x = 1%, 1.75%, 2.5%) is prepared successfully by centrifugal casting. Samples pin of diameter 8 mm, 10 mm, & 12 mm are prepared with help of special pur...Aluminum-copper titanium di-boride [Al-4Cu-xTiB2] composite (x = 1%, 1.75%, 2.5%) is prepared successfully by centrifugal casting. Samples pin of diameter 8 mm, 10 mm, & 12 mm are prepared with help of special purpose die. An experimental parameter analysis is obtained for various load and speed combinations on pinon wear disc testing machine. A larger volume fraction of particles can be attained near the wear surface via centrifugal casting. The volume fraction of the heavier titanium di-boride is controlled by inertial forces upon centrifugal processing the semisolid composite. Mathematical Regression Analysis is carried out to calculate wear. Greasy material facilitates heat transfer on the counter side material. Comparative study facilitates wear predictions of Al-4Cu-xTiB2 metal matrix composite for various practical applications.展开更多
文摘Aluminum-copper titanium di-boride [Al-4Cu-xTiB2] composite (x = 1%, 1.75%, 2.5%) is prepared successfully by centrifugal casting. Samples pin of diameter 8 mm, 10 mm, & 12 mm are prepared with help of special purpose die. An experimental parameter analysis is obtained for various load and speed combinations on pinon wear disc testing machine. A larger volume fraction of particles can be attained near the wear surface via centrifugal casting. The volume fraction of the heavier titanium di-boride is controlled by inertial forces upon centrifugal processing the semisolid composite. Mathematical Regression Analysis is carried out to calculate wear. Greasy material facilitates heat transfer on the counter side material. Comparative study facilitates wear predictions of Al-4Cu-xTiB2 metal matrix composite for various practical applications.