The Na+ - K+ ATPase is an enzyme responsible for the active transport of Na+ and K+ in most eukaryotic cells. The aim of the present study was to determine the effect of Tachykinin neuropeptide, Neurokinin B (NKB) and...The Na+ - K+ ATPase is an enzyme responsible for the active transport of Na+ and K+ in most eukaryotic cells. The aim of the present study was to determine the effect of Tachykinin neuropeptide, Neurokinin B (NKB) and Amyloid beta fragment Aβ (25 - 35) on 17β estradiol (E2) treated aging female rat brain synaptosomes of different age groups, by assaying Na+ - K+ ATPase enzyme activity. An in vitro incubation of isolated synaptosomes with Aβ (25 - 35) showed toxic effects while NKB showed stimulating effect on the Na+ - K+ ATPase activity, and the combined NKB + Aβ (25 - 35) incubations showed a partial effect as compared to the Aβ (25 - 35) alone. To understand whether E2 affects the expression of Na+ - K+ ATPase molecules, we examined the expression of Na+ - K+ ATPase subunit α1 and β2 in E2 treated aging female rat brain synaptosomes. The enzyme was quantified by SDS PAGE in control and E2 treated rat brain. We observed that the expression of α1 and β2 Na+ - K+ ATPase molecules increased and reversed to a normal level in E2 treated synaptosomes. These results confirmed that E2 increased turnover of Na+ - K+ ATPase molecules in aging rat brain. The present findings also suggest a possible role of NKB with E2 in the age related changes in the brain.展开更多
Aging is the leading risk factor for neurodegenerative diseases and oxidative stress involved in the pathophysiology of these diseases. These changes increase during menopausal condition in females when the level of e...Aging is the leading risk factor for neurodegenerative diseases and oxidative stress involved in the pathophysiology of these diseases. These changes increase during menopausal condition in females when the level of estradiol is decreased. The aim of the present study was to determine the effect of tachykinin neuropeptide, Neurokinin B (NKB) and Amyloid beta fragment Aβ (25 -?35) on 17β estradiol (E2) treated aging female rat synaptosomes of different age groups. Aging brain functions were assayed by measuring the activities of antioxidant enzymes—superoxide dismutase (SOD) and monoamine oxidase (MAO) with neuropeptides. An in-vitro incubation of Aβ (25 -?35) in E2 treated brain synaptosomes showed toxic effects on all the parameters. However, NKB and NKB combined with Aβ (25 35) showed stimulating effects in E2 treated rat brain synaptosomes. In the present study, an increase in activity of SOD and decrease in the level of MAO, in the presence of NKB and combined NKB and Aβ in E2 treated brain synaptosomes of aging rats. This study elucidates that treatment of NKB and Aβ with E2 incombination exerts more protective influence than their individual application, against excitotoxicity in age related changes.展开更多
The brain experiences structural, molecular and functional alterations during aging. In aging brain tissue, the oxidative stress increases due to decreased activity of antioxidant enzymes and increased oxidative stres...The brain experiences structural, molecular and functional alterations during aging. In aging brain tissue, the oxidative stress increases due to decreased activity of antioxidant enzymes and increased oxidative stress leading to neurodegeneration associated with excitotoxicity. In the present study, we observed the effect of tachykinin neuropeptide Neurokinin B (NKB) and amyloid beta fragment Aβ (25 -?35) on the activity of Acetylcholine esterase (AChE) and Lipid peroxidation (LPO) in brains of 17β estradiol (E2) treated aging female rat synaptosomes of different age groups. An in-vitro incubation of E2 treated brain synaptosomes with Aβ (25 -?35) showed toxic effects on all the parameters. The treatment of NKB and combined NKB and Aβ (25 -?35) increased the AChE enzyme activity and decreased the level of LPO in E2 treated aging rats. The treatment of NKB and combined NKB and Aβ (25 - 35) in a concentration dependent manner reversed the effects of aging and Aβ (25 -?35) on AChE and LPO. The present finding suggests that E2 along with NKB reverse aging and Aβ (25 -?35) induced toxicity as well as AChE and LPO levels. The results of the current study showed a possible beneficial role of NKB with E2 inthe age related neurological diseases.展开更多
文摘The Na+ - K+ ATPase is an enzyme responsible for the active transport of Na+ and K+ in most eukaryotic cells. The aim of the present study was to determine the effect of Tachykinin neuropeptide, Neurokinin B (NKB) and Amyloid beta fragment Aβ (25 - 35) on 17β estradiol (E2) treated aging female rat brain synaptosomes of different age groups, by assaying Na+ - K+ ATPase enzyme activity. An in vitro incubation of isolated synaptosomes with Aβ (25 - 35) showed toxic effects while NKB showed stimulating effect on the Na+ - K+ ATPase activity, and the combined NKB + Aβ (25 - 35) incubations showed a partial effect as compared to the Aβ (25 - 35) alone. To understand whether E2 affects the expression of Na+ - K+ ATPase molecules, we examined the expression of Na+ - K+ ATPase subunit α1 and β2 in E2 treated aging female rat brain synaptosomes. The enzyme was quantified by SDS PAGE in control and E2 treated rat brain. We observed that the expression of α1 and β2 Na+ - K+ ATPase molecules increased and reversed to a normal level in E2 treated synaptosomes. These results confirmed that E2 increased turnover of Na+ - K+ ATPase molecules in aging rat brain. The present findings also suggest a possible role of NKB with E2 in the age related changes in the brain.
文摘Aging is the leading risk factor for neurodegenerative diseases and oxidative stress involved in the pathophysiology of these diseases. These changes increase during menopausal condition in females when the level of estradiol is decreased. The aim of the present study was to determine the effect of tachykinin neuropeptide, Neurokinin B (NKB) and Amyloid beta fragment Aβ (25 -?35) on 17β estradiol (E2) treated aging female rat synaptosomes of different age groups. Aging brain functions were assayed by measuring the activities of antioxidant enzymes—superoxide dismutase (SOD) and monoamine oxidase (MAO) with neuropeptides. An in-vitro incubation of Aβ (25 -?35) in E2 treated brain synaptosomes showed toxic effects on all the parameters. However, NKB and NKB combined with Aβ (25 35) showed stimulating effects in E2 treated rat brain synaptosomes. In the present study, an increase in activity of SOD and decrease in the level of MAO, in the presence of NKB and combined NKB and Aβ in E2 treated brain synaptosomes of aging rats. This study elucidates that treatment of NKB and Aβ with E2 incombination exerts more protective influence than their individual application, against excitotoxicity in age related changes.
文摘The brain experiences structural, molecular and functional alterations during aging. In aging brain tissue, the oxidative stress increases due to decreased activity of antioxidant enzymes and increased oxidative stress leading to neurodegeneration associated with excitotoxicity. In the present study, we observed the effect of tachykinin neuropeptide Neurokinin B (NKB) and amyloid beta fragment Aβ (25 -?35) on the activity of Acetylcholine esterase (AChE) and Lipid peroxidation (LPO) in brains of 17β estradiol (E2) treated aging female rat synaptosomes of different age groups. An in-vitro incubation of E2 treated brain synaptosomes with Aβ (25 -?35) showed toxic effects on all the parameters. The treatment of NKB and combined NKB and Aβ (25 -?35) increased the AChE enzyme activity and decreased the level of LPO in E2 treated aging rats. The treatment of NKB and combined NKB and Aβ (25 - 35) in a concentration dependent manner reversed the effects of aging and Aβ (25 -?35) on AChE and LPO. The present finding suggests that E2 along with NKB reverse aging and Aβ (25 -?35) induced toxicity as well as AChE and LPO levels. The results of the current study showed a possible beneficial role of NKB with E2 inthe age related neurological diseases.