The author has begun a new try in teaching the passive voice to English majors,which breaks through the traditional teaching method.By introducing the two physical teaching terms“variable”and“constant”,he intends ...The author has begun a new try in teaching the passive voice to English majors,which breaks through the traditional teaching method.By introducing the two physical teaching terms“variable”and“constant”,he intends to help his students have an overall look at the relationship between the passive voice and the active voice in order not to abuse the former in practice.展开更多
A recent study showed that erythromycin(ERY)exposure caused hormesis in a model alga(Raphidocelis subcapitata)where the growth was promoted at an environmentally realistic concentration(4μg/L)but inhibited at two hig...A recent study showed that erythromycin(ERY)exposure caused hormesis in a model alga(Raphidocelis subcapitata)where the growth was promoted at an environmentally realistic concentration(4μg/L)but inhibited at two higher concentrations(80 and 120μg/L),associated with opposite actions of certain signaling pathways(e.g.,xenobiotic metabolism,DNA replication).However,these transcriptional alterations remain to be investigated and verified at the metabolomic level.This study uncovered metabolomic profiles and detailed toxic mechanisms of ERY in R.subcapitata using untargetedmetabolomics.Themetabolomic analysis showed that metabolomic pathways including ABC transporters,fatty acid biosynthesis and purine metabolism were associated with growth promotion in algae treated with 4μg/L ERY.An overcompensation was possibly activated by the low level of ERY in algae where more resources were reallocated to efficiently restore the temporary impairments,ultimately leading to the outperformance of growth.By contrast,algal growth inhibition in the 80 and 120μg/L ERY treatments was likely attributed to the dysfunction of metabolomic pathways related to ABC transporters,energy metabolism and metabolism of nucleosides.Apart from binding of ERY to the 50S subunit of ribosomes to inhibit protein translation as in bacteria,the data presented here indicate that inhibition of protein translation and growth performance of algae by ERY may also result from the suppression of amino acid biosynthesis and aminoacyl-tRNA biosynthesis.This study provides novel insights into the dose-dependent toxicity of ERY on R.subcapitata.展开更多
文摘The author has begun a new try in teaching the passive voice to English majors,which breaks through the traditional teaching method.By introducing the two physical teaching terms“variable”and“constant”,he intends to help his students have an overall look at the relationship between the passive voice and the active voice in order not to abuse the former in practice.
基金supported by the National Natural Science Foundation of China (No. 42101077)The Key Research and Development Program of Shaan Xi Province (No. 2020SF-387)ShaanXi Thousand Talent Program for Young Outstanding Scientists (No. 334041900007)
文摘A recent study showed that erythromycin(ERY)exposure caused hormesis in a model alga(Raphidocelis subcapitata)where the growth was promoted at an environmentally realistic concentration(4μg/L)but inhibited at two higher concentrations(80 and 120μg/L),associated with opposite actions of certain signaling pathways(e.g.,xenobiotic metabolism,DNA replication).However,these transcriptional alterations remain to be investigated and verified at the metabolomic level.This study uncovered metabolomic profiles and detailed toxic mechanisms of ERY in R.subcapitata using untargetedmetabolomics.Themetabolomic analysis showed that metabolomic pathways including ABC transporters,fatty acid biosynthesis and purine metabolism were associated with growth promotion in algae treated with 4μg/L ERY.An overcompensation was possibly activated by the low level of ERY in algae where more resources were reallocated to efficiently restore the temporary impairments,ultimately leading to the outperformance of growth.By contrast,algal growth inhibition in the 80 and 120μg/L ERY treatments was likely attributed to the dysfunction of metabolomic pathways related to ABC transporters,energy metabolism and metabolism of nucleosides.Apart from binding of ERY to the 50S subunit of ribosomes to inhibit protein translation as in bacteria,the data presented here indicate that inhibition of protein translation and growth performance of algae by ERY may also result from the suppression of amino acid biosynthesis and aminoacyl-tRNA biosynthesis.This study provides novel insights into the dose-dependent toxicity of ERY on R.subcapitata.