In recent years,innovations in 3D/4D printing techniques for continuous fiber-reinforced polymer composites(CFRPCs)have opened new perspectives for the integrated design and manufacture of composites with customized f...In recent years,innovations in 3D/4D printing techniques for continuous fiber-reinforced polymer composites(CFRPCs)have opened new perspectives for the integrated design and manufacture of composites with customized functions.This paper reviews the current state of 3D/4D printed functional composites,including the materi-als,shape memory/changing effects,self-monitoring/healing behaviors,and challenges surrounding additive-manufactured functional composites.Specifically,continuous fibers and matrices that provide functional roles are classified and discussed in detail.4D printed shape memory and changing CFRPCs can retain their original shapes from a designed shape upon exposure to different external stimuli,including heat,electricity,humidity,and multi-stimuli activation.Furthermore,self-monitoring of structural health is achieved through the piezore-sistive features of reinforced fibers in 3D printed CFRPCs.Finally,this review concludes with an outlook on the future research opportunities for 3D/4D printed functional CFRPCs.展开更多
基金supported by National Natural Science Foundation of China(Grant No.51905555)Hu-Xiang Youth Talent Program of China(Grant No.2020RC3009)+1 种基金Hunan Provincial Science Foundation for Distinguished Young Scholars of China(Grant No.2021JJ10059)The first author gratefully acknowledges the financial support from the China Scholarship Council(Grant No.202206370135).
文摘In recent years,innovations in 3D/4D printing techniques for continuous fiber-reinforced polymer composites(CFRPCs)have opened new perspectives for the integrated design and manufacture of composites with customized functions.This paper reviews the current state of 3D/4D printed functional composites,including the materi-als,shape memory/changing effects,self-monitoring/healing behaviors,and challenges surrounding additive-manufactured functional composites.Specifically,continuous fibers and matrices that provide functional roles are classified and discussed in detail.4D printed shape memory and changing CFRPCs can retain their original shapes from a designed shape upon exposure to different external stimuli,including heat,electricity,humidity,and multi-stimuli activation.Furthermore,self-monitoring of structural health is achieved through the piezore-sistive features of reinforced fibers in 3D printed CFRPCs.Finally,this review concludes with an outlook on the future research opportunities for 3D/4D printed functional CFRPCs.