期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Three-Dimensional N-Doped Carbon Nanotube/Graphene Composite Aerogel Anode to Develop High-Power Microbial Fuel Cell
1
作者 shixuan jin Yiyu Feng +10 位作者 Jichao Jia Fulai Zhao Zijie Wu Peng Long Feng Li Huitao Yu Chi Yang Qijing Liu Baocai Zhang Hao Song Wei Feng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期161-169,共9页
Optimizing the structure of electrode materials is one of the most effective strategies for designing high-power microbial fuel cells(MFCs).However,electrode materials currently suffer from a series of shortcomings th... Optimizing the structure of electrode materials is one of the most effective strategies for designing high-power microbial fuel cells(MFCs).However,electrode materials currently suffer from a series of shortcomings that limit the output of MFCs,such as high intrinsic resistance,poor electrolyte wettability,and low microbial load capacity.Here,a three-dimensional(3D)nitrogen-doped multiwalled carbon nanotube/graphene(N-MWCNT/GA)composite aerogel is synthesized as the anode for MFCs.Comparing nitrogen-doped GA,MWCNT/GA,and N-MWCNT/GA,the macroporous hydrophilic N-MWCNT/GA electrode with an average pore size of 4.24μm enables high-density loading of the microbes and facilitates extracellular electron transfer with low intrinsic resistance.Consequently,the hydrophilic surface of N-MWCNT can generate high charge mobility,enabling a high-power output performance of the MFC.In consequence,the MFC system based on N-MWCNT/GA anode exhibits a peak power density and output voltage of 2977.8 mW m^(−2)and 0.654 V,which are 1.83 times and 16.3%higher than those obtained with MWCNT/GA,respectively.These results demonstrate that 3D N-MWCNT/GA anodes can be developed for high-power MFCs in different environments by optimizing their chemical and microstructures. 展开更多
关键词 ANODE graphene aerogel microbial fuel cell N-doped carbon nanotube
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部