期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Continuous generation of lattice oxygen via redox engineering for boosting toluene degradation performances
1
作者 shiya he Zhimin You +4 位作者 Xin Jin Yi Wu Cheng Chen he Zhao Jian Shen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期258-266,共9页
Excellent performances promoted by lattice oxygen have attracted wide attention for catalytic degradation of volatile organic compounds(VOCs).However,how to control the continuous regeneration of lattice oxygen from t... Excellent performances promoted by lattice oxygen have attracted wide attention for catalytic degradation of volatile organic compounds(VOCs).However,how to control the continuous regeneration of lattice oxygen from the support is seldom reported.In this study,we selected sepiolite supported manganese-cobalt oxides(Co_(x)Mn_(100-x)O_(y))as model catalysts by tuning Co/(Co+Mn)mass ratio(x=3%,10%,15%,and 20%)to enhance toluene degradation efficiency,owing to lattice oxygen regeneration by redox cycle existing at the interface and Mn species with high valence state,initiated by cobalt catalytic performance under the role of crystal field stability phase.The results of activity test show that the sepiolite-Co_(15)Mn_(85)O_(y)catalyst exhibit outperformances at 193℃with 10,000 h^(-1)GHSV.In addition,the catalyst existed at the bottom of the"volcano"curve correlated T_(50)or T_(90)with Co/(Co+Mn)weight ratio is sepiolite-Co_(15)Mn_(85)O_(y),conforming its outperformance.Further characterized by investigating active sites structural and electronic properties,the essential of superior catalytic activity is attributed to the grands of lattice oxygen continuous formation resulted from redox engineering based on the high atomic ratio of surface lattice oxygen with continuous refilled from the support and that of Mn^(4+)/Mn^(3+)cycle initiated by cobalt catalytic behaviors.All in all,redox engineering,not only promotes grands of active species reversible regeneration,but supplies an alternative catalyst design strategy towards the terrific efficiency-to-cost ratio performance. 展开更多
关键词 Redox engineering Crystal field stability phase Lattice oxygen Toluene degradation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部