Pressure-driven membrane filtration systems are widely utilized in wastewater treatment,desalination,and water reclamation and have received extensive attention from researchers.Computational fluid dynamics(CFD)offers...Pressure-driven membrane filtration systems are widely utilized in wastewater treatment,desalination,and water reclamation and have received extensive attention from researchers.Computational fluid dynamics(CFD)offers a convenient approach for conducting mechanistic studies of flow and mass transfer characteristics in pressure-driven systems.As a signature phenomenon in membrane systems,the concentration polarization that accompanies the permeation process is a key factor in membrane performance degradation and membrane fouling intensification.Multiple fouling models(scaling,biofouling and colloidal particle fouling)based on CFD theory have been constructed,and considerable research has been conducted.Several representative antifouling strategies with special simulation methods,including patterned membranes,vibration membranes,rotation membranes,and pulsatile flows,have also been discussed.Future studies should focus on refining fouling models while considering local hydrodynamic characteristics;experimental observation tools focusing on the internal structure of inhomogeneous fouling layers;techno-economic model of antifouling strategies such as vibrational,rotational and pulsatile flows;and unfavorable hydraulic phenomena induced by rapidly changing flows in simulations.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52270076)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202105).
文摘Pressure-driven membrane filtration systems are widely utilized in wastewater treatment,desalination,and water reclamation and have received extensive attention from researchers.Computational fluid dynamics(CFD)offers a convenient approach for conducting mechanistic studies of flow and mass transfer characteristics in pressure-driven systems.As a signature phenomenon in membrane systems,the concentration polarization that accompanies the permeation process is a key factor in membrane performance degradation and membrane fouling intensification.Multiple fouling models(scaling,biofouling and colloidal particle fouling)based on CFD theory have been constructed,and considerable research has been conducted.Several representative antifouling strategies with special simulation methods,including patterned membranes,vibration membranes,rotation membranes,and pulsatile flows,have also been discussed.Future studies should focus on refining fouling models while considering local hydrodynamic characteristics;experimental observation tools focusing on the internal structure of inhomogeneous fouling layers;techno-economic model of antifouling strategies such as vibrational,rotational and pulsatile flows;and unfavorable hydraulic phenomena induced by rapidly changing flows in simulations.