Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We id...Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We identified three strong signals at the qFT02-2 locus(Chr02:12037319–12238569),which were associated with flowering time in three environments:Gongzhuling,Mengcheng,and Nanchang.By analyzing linkage disequilibrium,gene expression patterns,gene annotation,and the diversity of variants,we identified an AP1 homolog as the candidate gene for the qFT02-2 locus,which we named GmAP1d.Only one nonsynonymous polymorphism existed among 1490 soybean accessions at position Chr02:12087053.Accessions carrying the Chr02:12087053-T allele flowered significantly earlier than those carrying the Chr02:12087053-A allele.Thus,we developed a cleaved amplified polymorphic sequence(CAPS)marker for the SNP at Chr02:12087053,which is suitable for marker-assisted breeding of flowering time.Knockout of GmAP1d in the‘Williams 82’background by gene editing promoted flowering under long-day conditions,confirming that GmAP1d is the causal gene for qFT02-2.An analysis of the region surrounding GmAP1d revealed that GmAP1d was artificially selected during the genetic improvement of soybean.Through stepwise selection,the proportion of modern cultivars carrying the Chr02:12087053-T allele has increased,and this allele has become nearly fixed(95%)in northern China.These findings provide a theoretical basis for better understanding the molecular regulatory mechanism of flowering time in soybean and a target gene that can be used for breeding modern soybean cultivars adapted to different latitudes.展开更多
Soybean(Glycine max L.)is a protein and oil crop grown worldwide.Its fitness may be reduced by deleterious mutations,whose identification and purging is desirable for crop breeding.In the published whole-genome re-seq...Soybean(Glycine max L.)is a protein and oil crop grown worldwide.Its fitness may be reduced by deleterious mutations,whose identification and purging is desirable for crop breeding.In the published whole-genome re-sequenced data of 2214 soybean accessions,including 221 wild soybean,1132 landrace cultivars and 861 improved soybean lines,we identified 115,275 deleterious single-nucleotide polymorphisms(SNPs).Numbers of deleterious alleles increased from wild soybeans to landraces and decreased from landraces to modern improved lines.Genes in selective-sweep regions showed fewer deleterious mutations than the remaining genes.Deleterious mutations explained 4.3%-48%more phenotypic variation than randomly selected SNPs for resistance to soybean cyst nematode race 2(SCN2),soybean cyst nematode race 3(SCN3)and soybean mosaic virus race 3(SMV3).These findings illustrate how mutation load has shifted during soybean domestication,expansion and improvement and provide candidate sites for breeding out deleterious mutations in soybean by genome editing and/or conventional breeding focused on the selection of progeny with fewer deleterious alleles.展开更多
Metal–organic frameworks(MOFs) are of great interest as potential electrochemically active materials.However, few studies have been conducted into understanding whether control of the shape and components of MOFs can...Metal–organic frameworks(MOFs) are of great interest as potential electrochemically active materials.However, few studies have been conducted into understanding whether control of the shape and components of MOFs can optimize their electrochemical performances due to the rational realization of their shapes. Component control of MOFs remains a significant challenge. Herein, we demonstrate a solvothermal method to realize nanostructure engineering of 2D nanoflake MOFs. The hollow structures withNi/Co-and Ni-MOF(denoted as Ni/Co-MOF nanoflakes and Ni-MOF nanoflakes) were assembled for their electrochemical performance optimizations in supercapacitors and in the oxygen reduction reaction(ORR). As a result, the Ni/CoMOF nanoflakes exhibited remarkably enhanced performance with a specific capacitance of 530.4 F g^(-1)at 0.5 A g^(-1)in1 M LiO H aqueous solution, much higher than that of NiMOF(306.8 F g^(-1)) and ZIF-67(168.3 F g^(-1)), a good rate capability, and a robust cycling performance with no capacity fading after 2000 cycles. Ni/Co-MOF nanoflakes also showed improved electrocatalytic performance for the ORR compared to Ni-MOF and ZIF-67. The present work highlights the significant role of tuning 2D nanoflake ensembles of Ni/Co-MOF in accelerating electron and charge transportation for optimizing energy storage and conversion devices.展开更多
Dear Editor,Rabies is a generally fatal disease caused by the rabies virus(RABV),and is transmitted mainly by Carnivora and Chiroptera(Fooks A R,et al.,2014;Tao X,et al.,2013).In China,stray dogs and some wild animals...Dear Editor,Rabies is a generally fatal disease caused by the rabies virus(RABV),and is transmitted mainly by Carnivora and Chiroptera(Fooks A R,et al.,2014;Tao X,et al.,2013).In China,stray dogs and some wild animals(e.g.,Chinese ferret badgers,foxes,and raccoon dogs)are the principal reservoirs for RABV(Hu R L,et al.,2009).Historically,rabies in wild foxes and raccoon dogs(Nyctereutes procyonoides)was recorded in the early展开更多
Brain injuries often result in the promotion of cell proliferation in the hippocampal dentate gyrus(DG),but the number of newborn cells declines with time.However,the cause of this decline remains poorly understood....Brain injuries often result in the promotion of cell proliferation in the hippocampal dentate gyrus(DG),but the number of newborn cells declines with time.However,the cause of this decline remains poorly understood.Elucidation of the fate of these newborn cells will further the understanding of the pathological process and treatment of brain injury.In the present study,the number of newborn cells was quantitatively analyzed using an unbiased stereological method following hippocampal lesion by kainic acid,in combination with detection of apoptosis and autophagy.Results revealed that hippocampal lesion resulted in a significantly increased number of 5-bromo-2-deoxyuridine(BrdU)-positive cells in the DG,which subsequently decreased with time.BrdU/cleaved caspase-3 double-labeled cells were detected in the granular cell layer and hilus of DG.However,expressions of LC3-11,Beclin 1,and p53 were upregulated,and pro-caspase-3 and Bcl-2 were downregulated.Results indicated that hippocampal lesion in adult rats resulted in significant cell proliferation in the DG,which subsequently reduced with time.In addition,results suggested that apoptosis and autophagic processes could regulate cell proliferation in the DG following hippocampal lesion.展开更多
In the first round of returning farmland to forest,many places in Hubei Province have vigorously developed ecological forests dominated by pine,fir and cypress,to improve the fragile ecological situation as soon as po...In the first round of returning farmland to forest,many places in Hubei Province have vigorously developed ecological forests dominated by pine,fir and cypress,to improve the fragile ecological situation as soon as possible.At present,this kind of ecological forests are facing the dilemma of more pure forests,higher density and less management,with worse economic benefits.To realize high-quality development of these stands,it is necessary to carry out forest management guided by the close-to-nature concept.These stands will be transformed into permanent forests with multi tree species,multi age classes,multi levels and continuous coverage,to realize organic unity of economic,ecological and social benefits.展开更多
Advances in plant phenotyping technologies are dramatically reducing the marginal costs of collecting multiple phenotypic measurements across several time points.Yet,most current approaches and best statistical practi...Advances in plant phenotyping technologies are dramatically reducing the marginal costs of collecting multiple phenotypic measurements across several time points.Yet,most current approaches and best statistical practices implemented to link genetic and phenotypic variation in plants have been developed in an era of single-time-point data.Here,we used time-series phenotypic data collected with an unmanned aircraft system for a large panel of soybean(Glycine max(L.)Merr.)varieties to identify previously uncharacterized loci.Specifically,we focused on the dissection of canopy coverage(CC)variation from this rich data set.We also inferred the speed of canopy closure,an additional dimension of CC,from the time-series data,as it may represent an important trait for weed control.Genome-wide association studies(GWASs)identified 35 loci exhibiting dynamic associations with CC across developmental stages.The time-series data enabled the identification of 10 known flowering time and plant height quantitative trait loci(QTLs)detected in previous studies of adult plants and the identification of novel QTLs influencing CC.These novel QTLs were disproportionately likely to act earlier in development,which may explain why they were missed in previous single-time-point studies.Moreover,this time-series data set contributed to the high accuracy of the GWASs,which we evaluated by permutation tests,as evidenced by the repeated identification of loci across multiple time points.Two novel loci showed evidence of adaptive selection during domestication,with different genotypes/haplotypes favored in different geographic regions.In summary,the time-series data,with soybean CC as an example,improved the accuracy and statistical power to dissect the genetic basis of traits and offered a promising opportunity for crop breeding with quantitative growth curves.展开更多
OBJECTIVE: To investigate the apoptotic effects and underlying molecular mechanisms of Celastrus orbiculatus (C. orbiculatus) extract in human hepa- tocellular carcinoma cells. METHODS: Human hepatocellular carcin...OBJECTIVE: To investigate the apoptotic effects and underlying molecular mechanisms of Celastrus orbiculatus (C. orbiculatus) extract in human hepa- tocellular carcinoma cells. METHODS: Human hepatocellular carcinoma cells (HCCLM6) were treated with C. orbiculatus extract (COE) at different nontoxic concentrations (10, 20, 40, 80, and 160 IJg/mL). The effect of COE on HC-CLM6 viability was examined using 3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. Cellular apoptosis following COE treatment was assessed by flow cytometry and western blot analysis. RESULTS: COE significantly inhibited cell viability and induced apoptosis of HCCLM6 cells in a dose-dependent manner. Apoptosis was accompa- nied by increased Bax expression and decreased Bcl-2 expression. In addition, COE treatment led to the release of cytochrome c, activation of cas- pase-3, and cleavage of poly (ADP-ribose) poly- merase (PARP). Furthermore, activation of extracel- lular signal-regulated kinase (ERK), p38 kinase, and c-Jun N-terminal kinase (JNK) phosphorylation, and down-regulation of Akt phosphorylation was ob- served. CONCLUSION: COE induces mitochondrial-mediat- ed, caspase-dependent apoptosis in HCCLM6 cells, which might be attributed to the activation of mito- gen-activated protein kinase (MAPK) and inhibition of Akt signaling pathways. These data suggest that COE may be a potential treatment for human hepa- tocellular carcinoma.展开更多
The synergy effect between different components has attracted widespread attentions because of improved activity, selectivity and stability than single component. In this paper, we fabricated mesoporous hybrid dual-me...The synergy effect between different components has attracted widespread attentions because of improved activity, selectivity and stability than single component. In this paper, we fabricated mesoporous hybrid dual-metal Co and Fe containing metallic organic framework(Co/Fe-MOF), Fe-MOF,and Co-MOF in the ionic liquid(IL)/supercritical CO2(SC)/surfactant emulsion system, and then studied the electrochemical properties of the three MOFs systematically. Experiment results indicate that, by taking advantages of coexistence of double metal, hybrid bi-metal Co/Fe-MOF exhibits the highest specific capacitance and the best cycling stability, with specific capacitance to 319.5 F/g at 1 A/g, 1.4 and 4 times for single Co-MOF and Fe-MOF, respectively.展开更多
Developing efficient and robust electrocatalysts toward ethanol oxidation reaction(EOR)with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells(DEFCs).Unfortunately,current most ...Developing efficient and robust electrocatalysts toward ethanol oxidation reaction(EOR)with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells(DEFCs).Unfortunately,current most EOR electrocatalysts suffer from rapid activity degradation and poor C1 pathway selectivity for complete oxidation of ethanol.Herein,we report a novel electrocatalyst of five-fold twinned(FFT)Ir-alloyed Pt nanorods(NRs)toward EOR.Such FFT Pt-Ir NRs bounded by five(100)facets on the sides and ten(111)facets at two ends possess high percentage of(100)facets with tensile strain.Owing to the inherent characteristics of the FFT NR and Ir alloying,the as-prepared FFT Pt-Ir NRs display excellent alkaline EOR performance with a mass activity(MA)of 4.18 A·mgPt^(-1),a specific activity(SA)of 10.22 mA·cm^(-2),and a Faraday efficiency of 61.21%for the C1 pathway,which are 6.85,5.62,and 7.70 times higher than those of a commercial Pt black,respectively.Besides,our catalyst also exhibits robust durability.The large percentage of open tensile-strained(100)facets and Ir alloying significantly promote the cleavage of C-C bonds and facilitate oxidation of the poisonous intermediates,leading to the transformation of the dominant reaction pathway for EOR from C2 to C1 pathway,and effectively suppress the deactivation of the catalyst.展开更多
A grain-size gradient Ni Ti ribbon with multiple-step shape transition was papered by means of meltspinning.The ribbons contain coarse and fine grains in the free surface side and copper roller surface side,respective...A grain-size gradient Ni Ti ribbon with multiple-step shape transition was papered by means of meltspinning.The ribbons contain coarse and fine grains in the free surface side and copper roller surface side,respectively.The grain-size gradient microstructure induces a two-stage phase transformation behavior in the ribbons during heating or cooling.After tensile deformation pre-treatment,the ribbons exhibit a back-and-forth shape change(shape A→B→A)upon a single heating or cooling process,resulting from the sequential phase transformation through the thickness of the ribbon as dictated by gradient grain size.The activating performance of the ribbons,i.e.shape transition amplitude and speed,can be customized by controlling the pre-deformation strain.This work offers a new opportunity for innovative designs to reach a novel shape memory behavior in Ni Ti alloys conveniently and efficiently.展开更多
基金supported by the National Natural Science Foundation of China(U22A20473)the National Key Research and Development Program of China(2021YFD1201600)+2 种基金the China Agriculture Research System(CARS-04-PS01)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences,Scientific Innovation 2030 Project(2022ZD0401703)the Platform of National Crop Germplasm Resources of China。
文摘Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We identified three strong signals at the qFT02-2 locus(Chr02:12037319–12238569),which were associated with flowering time in three environments:Gongzhuling,Mengcheng,and Nanchang.By analyzing linkage disequilibrium,gene expression patterns,gene annotation,and the diversity of variants,we identified an AP1 homolog as the candidate gene for the qFT02-2 locus,which we named GmAP1d.Only one nonsynonymous polymorphism existed among 1490 soybean accessions at position Chr02:12087053.Accessions carrying the Chr02:12087053-T allele flowered significantly earlier than those carrying the Chr02:12087053-A allele.Thus,we developed a cleaved amplified polymorphic sequence(CAPS)marker for the SNP at Chr02:12087053,which is suitable for marker-assisted breeding of flowering time.Knockout of GmAP1d in the‘Williams 82’background by gene editing promoted flowering under long-day conditions,confirming that GmAP1d is the causal gene for qFT02-2.An analysis of the region surrounding GmAP1d revealed that GmAP1d was artificially selected during the genetic improvement of soybean.Through stepwise selection,the proportion of modern cultivars carrying the Chr02:12087053-T allele has increased,and this allele has become nearly fixed(95%)in northern China.These findings provide a theoretical basis for better understanding the molecular regulatory mechanism of flowering time in soybean and a target gene that can be used for breeding modern soybean cultivars adapted to different latitudes.
基金supported by the National Natural Science Foundation of China(32172002,32070242)Shenzhen Science and Technology Program(KQTD2016113010482651)+1 种基金Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District(RC201901-05,PT201901-19)the USDA Agricultural Research Service Research Participation Program of the Oak Ridge Institute for Science and Education(ORISE)(DE-AC05-06OR23100).
文摘Soybean(Glycine max L.)is a protein and oil crop grown worldwide.Its fitness may be reduced by deleterious mutations,whose identification and purging is desirable for crop breeding.In the published whole-genome re-sequenced data of 2214 soybean accessions,including 221 wild soybean,1132 landrace cultivars and 861 improved soybean lines,we identified 115,275 deleterious single-nucleotide polymorphisms(SNPs).Numbers of deleterious alleles increased from wild soybeans to landraces and decreased from landraces to modern improved lines.Genes in selective-sweep regions showed fewer deleterious mutations than the remaining genes.Deleterious mutations explained 4.3%-48%more phenotypic variation than randomly selected SNPs for resistance to soybean cyst nematode race 2(SCN2),soybean cyst nematode race 3(SCN3)and soybean mosaic virus race 3(SMV3).These findings illustrate how mutation load has shifted during soybean domestication,expansion and improvement and provide candidate sites for breeding out deleterious mutations in soybean by genome editing and/or conventional breeding focused on the selection of progeny with fewer deleterious alleles.
基金supported by the National Natural Science Foundation of China (Nos. 21571157, U1604123, and 51473149)Outstanding Young Talent Research Fund of Zhengzhou University (1521320001)+1 种基金the Open Project Foundation of Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) (2017–29),Nankai UniversityOpen Project Foundation of Key Laboratory of Inorganic Synthesis and Preparation of Jilin University
文摘Metal–organic frameworks(MOFs) are of great interest as potential electrochemically active materials.However, few studies have been conducted into understanding whether control of the shape and components of MOFs can optimize their electrochemical performances due to the rational realization of their shapes. Component control of MOFs remains a significant challenge. Herein, we demonstrate a solvothermal method to realize nanostructure engineering of 2D nanoflake MOFs. The hollow structures withNi/Co-and Ni-MOF(denoted as Ni/Co-MOF nanoflakes and Ni-MOF nanoflakes) were assembled for their electrochemical performance optimizations in supercapacitors and in the oxygen reduction reaction(ORR). As a result, the Ni/CoMOF nanoflakes exhibited remarkably enhanced performance with a specific capacitance of 530.4 F g^(-1)at 0.5 A g^(-1)in1 M LiO H aqueous solution, much higher than that of NiMOF(306.8 F g^(-1)) and ZIF-67(168.3 F g^(-1)), a good rate capability, and a robust cycling performance with no capacity fading after 2000 cycles. Ni/Co-MOF nanoflakes also showed improved electrocatalytic performance for the ORR compared to Ni-MOF and ZIF-67. The present work highlights the significant role of tuning 2D nanoflake ensembles of Ni/Co-MOF in accelerating electron and charge transportation for optimizing energy storage and conversion devices.
基金funded by the National "973" project(no.2011CB500705)the Special Fund for Agro-Scientific Research in the Public Interest(no.201203056)
文摘Dear Editor,Rabies is a generally fatal disease caused by the rabies virus(RABV),and is transmitted mainly by Carnivora and Chiroptera(Fooks A R,et al.,2014;Tao X,et al.,2013).In China,stray dogs and some wild animals(e.g.,Chinese ferret badgers,foxes,and raccoon dogs)are the principal reservoirs for RABV(Hu R L,et al.,2009).Historically,rabies in wild foxes and raccoon dogs(Nyctereutes procyonoides)was recorded in the early
基金the Sino-Japanese Inter-University Cooperative Research Fund,No. EE 134005Excellent Doctoral Dissertation Fund of Soochow University,No.23320822
文摘Brain injuries often result in the promotion of cell proliferation in the hippocampal dentate gyrus(DG),but the number of newborn cells declines with time.However,the cause of this decline remains poorly understood.Elucidation of the fate of these newborn cells will further the understanding of the pathological process and treatment of brain injury.In the present study,the number of newborn cells was quantitatively analyzed using an unbiased stereological method following hippocampal lesion by kainic acid,in combination with detection of apoptosis and autophagy.Results revealed that hippocampal lesion resulted in a significantly increased number of 5-bromo-2-deoxyuridine(BrdU)-positive cells in the DG,which subsequently decreased with time.BrdU/cleaved caspase-3 double-labeled cells were detected in the granular cell layer and hilus of DG.However,expressions of LC3-11,Beclin 1,and p53 were upregulated,and pro-caspase-3 and Bcl-2 were downregulated.Results indicated that hippocampal lesion in adult rats resulted in significant cell proliferation in the DG,which subsequently reduced with time.In addition,results suggested that apoptosis and autophagic processes could regulate cell proliferation in the DG following hippocampal lesion.
基金Supported by Sino-German Technical Cooperation Close-to-Nature Forest Management Research(ZDJSHZ202001)Applied Research of English Translation in Sino-German Financial Cooperation Forestry Project(2018zdhzky01).
文摘In the first round of returning farmland to forest,many places in Hubei Province have vigorously developed ecological forests dominated by pine,fir and cypress,to improve the fragile ecological situation as soon as possible.At present,this kind of ecological forests are facing the dilemma of more pure forests,higher density and less management,with worse economic benefits.To realize high-quality development of these stands,it is necessary to carry out forest management guided by the close-to-nature concept.These stands will be transformed into permanent forests with multi tree species,multi age classes,multi levels and continuous coverage,to realize organic unity of economic,ecological and social benefits.
基金partially supported by the National Key R&D Program of China (2021YFD1201601)the Agricultural Science and Technology Innovation Program (ASTIP)of the Chinese Academy of Agricultural Sciences (CAAS-ZDRW202109)+1 种基金Hainan Yazhou Bay Seed Lab (B21HJ0221)supported by the UK Biotechnology and Biological Sciences Research Council as part of the Designing Future Wheat Project (BB/P016855/1)。
文摘Advances in plant phenotyping technologies are dramatically reducing the marginal costs of collecting multiple phenotypic measurements across several time points.Yet,most current approaches and best statistical practices implemented to link genetic and phenotypic variation in plants have been developed in an era of single-time-point data.Here,we used time-series phenotypic data collected with an unmanned aircraft system for a large panel of soybean(Glycine max(L.)Merr.)varieties to identify previously uncharacterized loci.Specifically,we focused on the dissection of canopy coverage(CC)variation from this rich data set.We also inferred the speed of canopy closure,an additional dimension of CC,from the time-series data,as it may represent an important trait for weed control.Genome-wide association studies(GWASs)identified 35 loci exhibiting dynamic associations with CC across developmental stages.The time-series data enabled the identification of 10 known flowering time and plant height quantitative trait loci(QTLs)detected in previous studies of adult plants and the identification of novel QTLs influencing CC.These novel QTLs were disproportionately likely to act earlier in development,which may explain why they were missed in previous single-time-point studies.Moreover,this time-series data set contributed to the high accuracy of the GWASs,which we evaluated by permutation tests,as evidenced by the repeated identification of loci across multiple time points.Two novel loci showed evidence of adaptive selection during domestication,with different genotypes/haplotypes favored in different geographic regions.In summary,the time-series data,with soybean CC as an example,improved the accuracy and statistical power to dissect the genetic basis of traits and offered a promising opportunity for crop breeding with quantitative growth curves.
基金Supported by the National Natural Science Foundation of China(No.81173603 and No.81274141)State Administration of Traditional Chinese Medicine of China(No.0405ZP35)+3 种基金Jiangsu Provincial Social Development Project(No. BE2011738)the Natural Science Foundation of Jiangsu Province(No.BK2012686)Administration of Traditional Chinese Medicine of Jiangsu Province(No.LZ11210)and the Project of Cooperation between Yangzhou University and Yangzhou City(No.YZ2010157)
文摘OBJECTIVE: To investigate the apoptotic effects and underlying molecular mechanisms of Celastrus orbiculatus (C. orbiculatus) extract in human hepa- tocellular carcinoma cells. METHODS: Human hepatocellular carcinoma cells (HCCLM6) were treated with C. orbiculatus extract (COE) at different nontoxic concentrations (10, 20, 40, 80, and 160 IJg/mL). The effect of COE on HC-CLM6 viability was examined using 3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. Cellular apoptosis following COE treatment was assessed by flow cytometry and western blot analysis. RESULTS: COE significantly inhibited cell viability and induced apoptosis of HCCLM6 cells in a dose-dependent manner. Apoptosis was accompa- nied by increased Bax expression and decreased Bcl-2 expression. In addition, COE treatment led to the release of cytochrome c, activation of cas- pase-3, and cleavage of poly (ADP-ribose) poly- merase (PARP). Furthermore, activation of extracel- lular signal-regulated kinase (ERK), p38 kinase, and c-Jun N-terminal kinase (JNK) phosphorylation, and down-regulation of Akt phosphorylation was ob- served. CONCLUSION: COE induces mitochondrial-mediat- ed, caspase-dependent apoptosis in HCCLM6 cells, which might be attributed to the activation of mito- gen-activated protein kinase (MAPK) and inhibition of Akt signaling pathways. These data suggest that COE may be a potential treatment for human hepa- tocellular carcinoma.
基金financially supported by the National Natural Science Foundation of China (Nos. 21571157, U1604123 and 51173170)outstanding Young Talent Research Fund of Zhengzhou University (No. 1521320001)the Open Project Foundation of Key Laboratory of Advanced Energy Materials Chemistry of Nankai University
文摘The synergy effect between different components has attracted widespread attentions because of improved activity, selectivity and stability than single component. In this paper, we fabricated mesoporous hybrid dual-metal Co and Fe containing metallic organic framework(Co/Fe-MOF), Fe-MOF,and Co-MOF in the ionic liquid(IL)/supercritical CO2(SC)/surfactant emulsion system, and then studied the electrochemical properties of the three MOFs systematically. Experiment results indicate that, by taking advantages of coexistence of double metal, hybrid bi-metal Co/Fe-MOF exhibits the highest specific capacitance and the best cycling stability, with specific capacitance to 319.5 F/g at 1 A/g, 1.4 and 4 times for single Co-MOF and Fe-MOF, respectively.
基金This work was supported by the National Natural Science Foundation of China(No.21908036)the China Postdoctoral Science Foundation(No.2019M662143)+1 种基金the Natural Science Foundation of Anhui Province(No.2008085QB74)the Fundamental Research Funds for the Central Universities(No.JZ2021HGTB0116).
文摘Developing efficient and robust electrocatalysts toward ethanol oxidation reaction(EOR)with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells(DEFCs).Unfortunately,current most EOR electrocatalysts suffer from rapid activity degradation and poor C1 pathway selectivity for complete oxidation of ethanol.Herein,we report a novel electrocatalyst of five-fold twinned(FFT)Ir-alloyed Pt nanorods(NRs)toward EOR.Such FFT Pt-Ir NRs bounded by five(100)facets on the sides and ten(111)facets at two ends possess high percentage of(100)facets with tensile strain.Owing to the inherent characteristics of the FFT NR and Ir alloying,the as-prepared FFT Pt-Ir NRs display excellent alkaline EOR performance with a mass activity(MA)of 4.18 A·mgPt^(-1),a specific activity(SA)of 10.22 mA·cm^(-2),and a Faraday efficiency of 61.21%for the C1 pathway,which are 6.85,5.62,and 7.70 times higher than those of a commercial Pt black,respectively.Besides,our catalyst also exhibits robust durability.The large percentage of open tensile-strained(100)facets and Ir alloying significantly promote the cleavage of C-C bonds and facilitate oxidation of the poisonous intermediates,leading to the transformation of the dominant reaction pathway for EOR from C2 to C1 pathway,and effectively suppress the deactivation of the catalyst.
基金supported by National Key R&D Program of China(2018YFB1105100)the NSFC(51971244,51731010,1637207)+2 种基金Science Foundation of China University of Petroleum,Beijing(2462018BJC005)the Pre-research Program of Frontier ScienceMinistry of Education(6141A020222)。
文摘A grain-size gradient Ni Ti ribbon with multiple-step shape transition was papered by means of meltspinning.The ribbons contain coarse and fine grains in the free surface side and copper roller surface side,respectively.The grain-size gradient microstructure induces a two-stage phase transformation behavior in the ribbons during heating or cooling.After tensile deformation pre-treatment,the ribbons exhibit a back-and-forth shape change(shape A→B→A)upon a single heating or cooling process,resulting from the sequential phase transformation through the thickness of the ribbon as dictated by gradient grain size.The activating performance of the ribbons,i.e.shape transition amplitude and speed,can be customized by controlling the pre-deformation strain.This work offers a new opportunity for innovative designs to reach a novel shape memory behavior in Ni Ti alloys conveniently and efficiently.