近年来,多种新型耐药基因的出现和全球性流行,严重威胁了全球公众健康。CRISPR-Cas9系统(clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 system)是细菌的一种适应性免疫系统,可切割耐药基因...近年来,多种新型耐药基因的出现和全球性流行,严重威胁了全球公众健康。CRISPR-Cas9系统(clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 system)是细菌的一种适应性免疫系统,可切割耐药基因、抵御外来核酸入侵,现已作为一种新型基因编辑工具应用于防控细菌耐药性研究。本团队已建立了一种单质粒介导靶向mcr-1基因的CRISPR-Cas9系统,能有效并特异性消除黏菌素耐药大肠杆菌中的mcr-1,恢复其对黏菌素的敏感性。同时也发现在临床中应用还需要优化其递送方式。本文对近几年该技术在细菌耐药性防控方面的研究进展进行了综述,包括CRISPR-Cas9系统的发现过程、作用机制、递送方式、在体外检测实验结果的进展以及当前存在的问题等方面,以期为防控细菌耐药性提供新思路。展开更多
Stress-rupture life of HR6W austenitic stainless steel modified with B and Mg additions was measured, and the microstructures were analyzed by optical microscopy, X-ray diffraction, scanning electron microscopy and tr...Stress-rupture life of HR6W austenitic stainless steel modified with B and Mg additions was measured, and the microstructures were analyzed by optical microscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy equipped with energy dispersive spectroscopy. The results indicated that the enhancement of the stress-rupture life was mainly due to the precipitation with B in the elemental form at the grain boundaries, and the improvement of the form of carbides at grain boundaries and the removal of O and S elements by addition of Mg. The micro-alloying elements have a beneficial effect on stress-rupture life of the modified-HR6W austenitic stainless steel at high temperature.展开更多
文摘近年来,多种新型耐药基因的出现和全球性流行,严重威胁了全球公众健康。CRISPR-Cas9系统(clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 system)是细菌的一种适应性免疫系统,可切割耐药基因、抵御外来核酸入侵,现已作为一种新型基因编辑工具应用于防控细菌耐药性研究。本团队已建立了一种单质粒介导靶向mcr-1基因的CRISPR-Cas9系统,能有效并特异性消除黏菌素耐药大肠杆菌中的mcr-1,恢复其对黏菌素的敏感性。同时也发现在临床中应用还需要优化其递送方式。本文对近几年该技术在细菌耐药性防控方面的研究进展进行了综述,包括CRISPR-Cas9系统的发现过程、作用机制、递送方式、在体外检测实验结果的进展以及当前存在的问题等方面,以期为防控细菌耐药性提供新思路。
文摘Stress-rupture life of HR6W austenitic stainless steel modified with B and Mg additions was measured, and the microstructures were analyzed by optical microscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy equipped with energy dispersive spectroscopy. The results indicated that the enhancement of the stress-rupture life was mainly due to the precipitation with B in the elemental form at the grain boundaries, and the improvement of the form of carbides at grain boundaries and the removal of O and S elements by addition of Mg. The micro-alloying elements have a beneficial effect on stress-rupture life of the modified-HR6W austenitic stainless steel at high temperature.