期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Antioxidative solution processing yields exceptional Sn(Ⅱ) stability for sub-1.4 eV bandgap inorganic perovskite solar cells 被引量:1
1
作者 Mingyu Hu Gaopeng Wang +9 位作者 Qinghong Zhang Jue Gong Zhou Xing Jinqiang Gao Jian Wang Peng Zeng shizhao zheng Mingzhen Liu Yuanyuan Zhou Shihe Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期487-494,I0014,共9页
Owing to the combined features of sub-1.4 eV bandgap and all-inorganic composition,cesium tin–lead(Sn-Pb)triiodide perovskite is promising for approaching the Shockley-Queisser limit of solar cells while avoiding the... Owing to the combined features of sub-1.4 eV bandgap and all-inorganic composition,cesium tin–lead(Sn-Pb)triiodide perovskite is promising for approaching the Shockley-Queisser limit of solar cells while avoiding the use of volatile organic cations.But the low Sn(Ⅱ)stability in this perovskite remains a hurdle for delivering its theoretically attainable device performance.Herein we present a synthesis method of this perovskite based on an acetylhydrazine-incorporated antioxidative solution system.Mechanistic investigation shows that acetylhydrazine effectively reduces the oxidation of solution-phase Sn(Ⅱ)and meanwhile creates an electron-rich,protective nano-environment for solid-state Sn(Ⅱ)ions.These lead to high oxidation resistance of the final film as well as effective defect inhibition.The resultant solar cells demonstrate power conversion efficiencies up to 15.04%,the highest reported so far for inorganic perovskite devices with sub-1.4 eV bandgaps.Furthermore,the T_(90) lifetime of these devices can exceed 1000 hours upon light soaking in a nitrogen atmosphere,demonstrating the potential advantage when lower-bandgap perovskite solar cells go all-inorganic. 展开更多
关键词 Inorganic perovskites Ideal-bandgap Perovskite solar cells Tin defects Efficiency
下载PDF
Materials and structures for the electron transport layer of efficient and stable perovskite solar cells 被引量:3
2
作者 shizhao zheng Gaopeng Wang +3 位作者 Tongfa Liu Lingyun Lou Shuang Xiao Shihe Yang 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第7期800-809,共10页
The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in pe... The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in perovskite solar cells. This review summarizes the recent research progress on electron transport materials of metal oxides, organic molecules and multilayers. The doped metal oxides as electron transport materials in regular perovskite solar cells show improved device performance relative to their non-doped counterpart due to enhanced electron mobility and energy level alignment. The non-fullerene organic electron transport materials with better electron mobility and tunable energy level alignment need to be further designed and developed despite their advantages of mechanical flexibility and wide range tunability. The multilayer electron transport materials are suggested to be an important direction of research for efficient and stable perovskite solar cells because of their favorable synergistic interaction. 展开更多
关键词 PEROVSKITE solar cells electron transport layer metal OXIDE ORGANIC MOLECULES MULTILAYER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部