Through the application of the VAR-AGARCH model to intra-day data for three cryptocurrencies(Bitcoin,Ethereum,and Litecoin),this study examines the return and volatility spillover between these cryptocurrencies during...Through the application of the VAR-AGARCH model to intra-day data for three cryptocurrencies(Bitcoin,Ethereum,and Litecoin),this study examines the return and volatility spillover between these cryptocurrencies during the pre-COVID-19 period and the COVID-19 period.We also estimate the optimal weights,hedge ratios,and hedging effectiveness during both sample periods.We find that the return spillovers vary across the two periods for the Bitcoin–Ethereum,Bitcoin–Litecoin,and Ethereum–Litecoin pairs.However,the volatility transmissions are found to be different during the two sample periods for the Bitcoin–Ethereum and Bitcoin–Litecoin pairs.The constant conditional correlations between all pairs of cryptocurrencies are observed to be higher during the COVID-19 period compared to the pre-COVID-19 period.Based on optimal weights,investors are advised to decrease their investments(a)in Bitcoin for the portfolios of Bitcoin/Ethereum and Bitcoin/Litecoin and(b)in Ethereum for the portfolios of Ethereum/Litecoin during the COVID-19 period.All hedge ratios are found to be higher during the COVID-19 period,implying a higher hedging cost compared to the pre-COVID-19 period.Last,the hedging effectiveness is higher during the COVID-19 period compared to the pre-COVID-19 period.Overall,these findings provide useful information to portfolio managers and policymakers regarding portfolio diversification,hedging,forecasting,and risk management.展开更多
This study examines the impact of family control on the dividend policy of firms in Pakistan,covering the period from 2009 to 2016.It also investigates whether family control moderates the impact of firm-specific fact...This study examines the impact of family control on the dividend policy of firms in Pakistan,covering the period from 2009 to 2016.It also investigates whether family control moderates the impact of firm-specific factors on the dividend policy.The GMM model for panel data estimation is used.The mean difference univariate analysis shows that family firms differ from nonfamily firms based on financial characteristics.The multivariate analysis shows that family firms pay lower dividends than nonfamily firms.Besides,firm size inversely affects the dividend policy,whereas tangibility positively affects it.Moreover,family control does not moderate the impact of all firm-specific factors on the dividend policy.Overall,family control,size,and tangibility are found to be the main determinants of the dividend policy in Pakistan.展开更多
This study examines herding behavior in the Pakistani Stock Market under different market conditions,focusing on the Ramadan effect and Crisis period by using data from 2004 to 2014.Two regression models of Christie a...This study examines herding behavior in the Pakistani Stock Market under different market conditions,focusing on the Ramadan effect and Crisis period by using data from 2004 to 2014.Two regression models of Christie and Huang(Financ Analysts J 51:31-37,1995)and Chang et al.,(J Bank Finance 24:1651-1679,2000)are used for herding estimations.Results based on daily stock data reveal that there is an absence of herding behavior during rising(up)and falling(down)market as well as during high and low volatility in market.While herding behavior is detected during low trading volume days.Yearly analysis shows that herding existed during 2005,2006 and 2007,while it is not evident during rest of the period.However,herding behavior is not detected during Ramadan.Furthermore,during financial crisis of 2007-08,Pakistani Stock Market exhibits herding behavior due to higher uncertainty and information asymmetry.展开更多
Srivastava and Jhajj [ 1 6] proposed a class of estimators for estimating population variance using multi auxiliary variables in simple random sampling and they utilized the means and variances of auxiliary variables....Srivastava and Jhajj [ 1 6] proposed a class of estimators for estimating population variance using multi auxiliary variables in simple random sampling and they utilized the means and variances of auxiliary variables. In this paper, we adapted this class and motivated by Searle [13], and we suggested more generalized class of estimators for estimating the population variance in simple random sampling. The expressions for the mean square error of proposed class have been derived in general form. Besides obtaining the minimized MSE of the proposed and adapted class, it is shown that the adapted classis the special case of the proposed class. Moreover, these theoretical findings are supported by an empirical study of original data.展开更多
文摘Through the application of the VAR-AGARCH model to intra-day data for three cryptocurrencies(Bitcoin,Ethereum,and Litecoin),this study examines the return and volatility spillover between these cryptocurrencies during the pre-COVID-19 period and the COVID-19 period.We also estimate the optimal weights,hedge ratios,and hedging effectiveness during both sample periods.We find that the return spillovers vary across the two periods for the Bitcoin–Ethereum,Bitcoin–Litecoin,and Ethereum–Litecoin pairs.However,the volatility transmissions are found to be different during the two sample periods for the Bitcoin–Ethereum and Bitcoin–Litecoin pairs.The constant conditional correlations between all pairs of cryptocurrencies are observed to be higher during the COVID-19 period compared to the pre-COVID-19 period.Based on optimal weights,investors are advised to decrease their investments(a)in Bitcoin for the portfolios of Bitcoin/Ethereum and Bitcoin/Litecoin and(b)in Ethereum for the portfolios of Ethereum/Litecoin during the COVID-19 period.All hedge ratios are found to be higher during the COVID-19 period,implying a higher hedging cost compared to the pre-COVID-19 period.Last,the hedging effectiveness is higher during the COVID-19 period compared to the pre-COVID-19 period.Overall,these findings provide useful information to portfolio managers and policymakers regarding portfolio diversification,hedging,forecasting,and risk management.
文摘This study examines the impact of family control on the dividend policy of firms in Pakistan,covering the period from 2009 to 2016.It also investigates whether family control moderates the impact of firm-specific factors on the dividend policy.The GMM model for panel data estimation is used.The mean difference univariate analysis shows that family firms differ from nonfamily firms based on financial characteristics.The multivariate analysis shows that family firms pay lower dividends than nonfamily firms.Besides,firm size inversely affects the dividend policy,whereas tangibility positively affects it.Moreover,family control does not moderate the impact of all firm-specific factors on the dividend policy.Overall,family control,size,and tangibility are found to be the main determinants of the dividend policy in Pakistan.
文摘This study examines herding behavior in the Pakistani Stock Market under different market conditions,focusing on the Ramadan effect and Crisis period by using data from 2004 to 2014.Two regression models of Christie and Huang(Financ Analysts J 51:31-37,1995)and Chang et al.,(J Bank Finance 24:1651-1679,2000)are used for herding estimations.Results based on daily stock data reveal that there is an absence of herding behavior during rising(up)and falling(down)market as well as during high and low volatility in market.While herding behavior is detected during low trading volume days.Yearly analysis shows that herding existed during 2005,2006 and 2007,while it is not evident during rest of the period.However,herding behavior is not detected during Ramadan.Furthermore,during financial crisis of 2007-08,Pakistani Stock Market exhibits herding behavior due to higher uncertainty and information asymmetry.
文摘Srivastava and Jhajj [ 1 6] proposed a class of estimators for estimating population variance using multi auxiliary variables in simple random sampling and they utilized the means and variances of auxiliary variables. In this paper, we adapted this class and motivated by Searle [13], and we suggested more generalized class of estimators for estimating the population variance in simple random sampling. The expressions for the mean square error of proposed class have been derived in general form. Besides obtaining the minimized MSE of the proposed and adapted class, it is shown that the adapted classis the special case of the proposed class. Moreover, these theoretical findings are supported by an empirical study of original data.