Super Typhoon Hinnamnor(2022)was a rare and unique western North Pacific typhoon,and throughout its lifespan,it exhibited all of the major features that pose current challenges in typhoon research.Specifically,during ...Super Typhoon Hinnamnor(2022)was a rare and unique western North Pacific typhoon,and throughout its lifespan,it exhibited all of the major features that pose current challenges in typhoon research.Specifically,during different stages of its lifespan,it experienced a sudden change of track,underwent rapid intensification,interacted and merged with another vortex,expanded in size,underwent rapid weakening,produced a strong cold wake,exhibited eyewall replacement,and underwent extratropical transition.Therefore,a timely identification and review of these features of Hinnamnor(2022),as reported in this article,will help update and enrich the case sets for each of these scientific issues and provide a background for more in-depth mechanistic studies of typhoon track,intensity,and structural changes in the future.We also believe that Hinnamnor(2022)can serve as an excellent benchmark to quickly evaluate the overall performance of different numerical models in predicting typhoon’s track,intensity,and structural changes.展开更多
基金supported in part by the National Science Foundation of China (Grant Nos. 42192554, 41876011, 61827901, and 41775065)the National Key Research and Development Program of China (Grant Nos. 2020YFE0201900 and 2022YFC3004200)+2 种基金Shanghai Typhoon Research Foundation (TFJJ202201)S&T Development Fund of CAMS 2022KJ012Basic Research Fund of CAMS 2022Y006
文摘Super Typhoon Hinnamnor(2022)was a rare and unique western North Pacific typhoon,and throughout its lifespan,it exhibited all of the major features that pose current challenges in typhoon research.Specifically,during different stages of its lifespan,it experienced a sudden change of track,underwent rapid intensification,interacted and merged with another vortex,expanded in size,underwent rapid weakening,produced a strong cold wake,exhibited eyewall replacement,and underwent extratropical transition.Therefore,a timely identification and review of these features of Hinnamnor(2022),as reported in this article,will help update and enrich the case sets for each of these scientific issues and provide a background for more in-depth mechanistic studies of typhoon track,intensity,and structural changes in the future.We also believe that Hinnamnor(2022)can serve as an excellent benchmark to quickly evaluate the overall performance of different numerical models in predicting typhoon’s track,intensity,and structural changes.