Sulfolane is an important aprotic polar solvent.Liquid-liquid equilibrium(LLE)data for the ternary systems of water+1,2-dichloroethane+sulfolane were measured at temperatures of 288.15,298.15 and 308.15 K under the at...Sulfolane is an important aprotic polar solvent.Liquid-liquid equilibrium(LLE)data for the ternary systems of water+1,2-dichloroethane+sulfolane were measured at temperatures of 288.15,298.15 and 308.15 K under the atmospheric pressure.The distribution coefficient and selectivity were determined from the measured LLE data,which showed that 1,2-dichloroethane is a suitable extractant for the recovery of sulfolane from its aqueous solution.The nonrandom two-liquid(NRTL)model and the universal quasi-chemical(UNIQUAC)model were utilized to correlate the experimental LLE data.The low values of RMSD indicated that the ternary system could be fitted well by the NRTL and UNIQUAC models.The consistency of the binary interaction parameters for the two thermodynamic models obtained was confirmed by the topological information contained in the Gibbs energy of mixing function(G^(M)/RT).展开更多
Swelling-induced morpholine functionalized adamantane-containing poly(aryl ether ketone) (MAPEK) membranes were prepared for vanadium flow batteries. MAPEK membranes were prepared from chloromethylated polymer and mor...Swelling-induced morpholine functionalized adamantane-containing poly(aryl ether ketone) (MAPEK) membranes were prepared for vanadium flow batteries. MAPEK membranes were prepared from chloromethylated polymer and morpholine and further swelling-induced with hot phosphoric acid to obtain membranes with enhanced ionic conductivity. The swelling, selectivity, and ionic conductivity of MAPEK membranes were regulated by varying the swelling temperature. Selective swelling-induced microphase separation in MAPEK membranes, forming wider ion transport pathways and resulting in low area resistance. The unique rigid adamantane-containing backbone limited the swelling of membranes. Consequently, MAPEK membranes showed excellent selectivity and conductivity (vanadium ion permeability coefficient of MAPEK membranes was lower than 3.82 × 0−7 cm2min−1) (Nafion212 membrane, 42.5 × 0−7 cm2min−1), and MAPEK-150 membrane exhibited low area resistance (0.17 Ωcm2). The vanadium flow batteries (VFB) with MAPEK-150 membrane exhibited high energy efficiency (91.1% at 80 mAcm−2, 81.4% at 200 mAcm−2). Furthermore, MAPEK membranes showed good stability in VFB and oxidative electrolytes. The swelling-induced method utilized in this work is a versatile and facile method to enhance the conductivity of ion-exchange membranes.展开更多
Lithium metal batteries (LMBs) are desirable candidates owing to their highenergyadvantage for next-generation batteries. However, the practical applicationof LMBs continues to be constrained by thorny safety issues w...Lithium metal batteries (LMBs) are desirable candidates owing to their highenergyadvantage for next-generation batteries. However, the practical applicationof LMBs continues to be constrained by thorny safety issues with the formationand growth of Li dendrites. Herein, the ZIF-67 MOFs are in situcoupled onto a single face of 3D porous nanofiber to fabricate an asymmetricJanus membrane, harnessing their anion adsorption capabilities to promotethe uniform deposition of Li ions. In addition, the poly(ethylene glycol)diacrylate and trifluoromethyl methacrylate are introduced into nanofiber skeletonto form Janus@GPE, which preferentially reacts with Li metal to form aLiF-rich stable SEI layer to inhibit Li dendrite growth. Importantly, the synergisticeffect of the MOFs and stable solid electrolyte interphase (SEI) layerresults in superior cycling performance, achieving a remarkable 2500 h cyclingat 1 mA cm^(-2) in the Li/Janus@GPE/Li configuration. In addition, theJanus@GPE electrolyte has a certain flame retardant, which can selfextinguishwithin 3 s, improving the safety performance of the batteries. Consequently,the Li/Janus@GPE/LFP flexible pouch cell exhibits favorablecycling stability (the capacity retention rate of 45 cycles is 91.8% at 0.1 C). Thiswork provides new insights and strategies to improve the safety and practicalutility of LMBs.展开更多
Currently,many cancer patients with bone defects are still threatened by tumor recurrence,postoperative bacterial infection,and massive bone loss.Many methods have been studied to endow bone implants with biocompatibi...Currently,many cancer patients with bone defects are still threatened by tumor recurrence,postoperative bacterial infection,and massive bone loss.Many methods have been studied to endow bone implants with biocompatibility,but it is difficult to find an implant material that can simultaneously solve the problems of anticancer,antibacterial and bone promotion.Here,a multifunctional gelatin methacrylate/dopamine methacrylate adhesive hydrogel coating containing 2D black phosphorus(BP)nanoparticle protected by polydopamine(pBP)is prepared by photocrosslinking to modify the surface of poly(aryl ether nitrile ketone)containing phthalazinone(PPENK)implant.The multifunctional hydrogel coating works in conjunction with pBP,which can deliver drug through photothermal mediation and kill bacteria through photodynamic therapy at the initial phase followed by promotion of osteointegration.In this design,photothermal effect of pBP control the release of doxorubicin hydrochloride loaded via electrostatic attraction.Meanwhile,pBP can generate reactive oxygen species(ROS)to eliminate bacterial infection under 808 nm laser.In the slow degradation process,pBP not only effectively consumes excess ROS and avoid apoptosis induced by ROS in normal cells,but also degrade into PO43to promote osteogenesis.In summary,nanocomposite hydrogel coatings provide a promising strategy for treatment of cancer patients with bone defects.展开更多
As their Liþtransference number(tLiþ),ionic conductivity,and safety are all high,polymer electrolytes play a vital role in overcoming uncontrollable lithium dendrites and low energy density in Li metal batte...As their Liþtransference number(tLiþ),ionic conductivity,and safety are all high,polymer electrolytes play a vital role in overcoming uncontrollable lithium dendrites and low energy density in Li metal batteries(LMBs).We therefore synthesized a three-dimensional(3D)semi-interpenetrating network-based single-ion-conducting fiber–gel composite polymer electrolyte(FGCPE)via an electrospinning,initiation,and in situ polymerization method.The FGCPE provides high ionic conductivity(1.36 mS cm^(-1)),high t_(Li+)(0.92),and a high electrochemical stability window(up to 4.84 V).More importantly,the aromatic heterocyclic structure of the biphenyl in the nanofiber membrane promotes the carbonization of the system(the limiting oxygen index value of the nanofiber membrane reaches 41%),giving it certain flame-retardant properties and solving the source-material safety issue.Due to the in situ method,the observable physical interface between electrodes and electrolytes is virtually eliminated,yielding a compact whole that facilitates rapid kinetic reactions in the cell.More excitingly,the LFP/FGCPE/Li cell displays outstanding cycling stability,with a capacity retention of 91.6%for 500 cycles even at 10C.We also test the FGCPE in high-voltage NMC532/FGCPE/Li cells and pouch cells.This newly designed FGCPE exhibits superior potential and feasibility for promoting the development of LMBs with high energy density and safety.展开更多
Bio-based epoxy thermoset prepared from renewable biomass raw materials can alleviate fossil energy crisis and reduce environmental pollution,which satisfies the needs of sustainable social development.In this study,a...Bio-based epoxy thermoset prepared from renewable biomass raw materials can alleviate fossil energy crisis and reduce environmental pollution,which satisfies the needs of sustainable social development.In this study,a bio-based epoxy thermoset precursor(MGOL-EP) was synthesized from a naturally occurring magnolol through a facile and efficient one-step process.And the fully bio-based epoxy thermoset(MGOL-EP-SC) was obtained by self-curing without adding any other hardener.MGOL-EP-SC revealed an extremely high glass-transition temperature(T_(g)) of 265℃ and char yield of 53.2%(in N;),which were at the highest level among the fully bio-based epoxy thermosets reported so far.In addition,when the MGOL-EP was cured with 4,4’-methylenedianiline(DDM),T_(g)of the MGOL-EP/DDM was decreased by 61℃ and the other comprehensive performance had also been decreased,which was due to a reduction in biphenyl structure content and cross-linking density by adding the external curing agents.Moreover,the MGOL-EP-SC presented certain killing rate(48.4%) to Staphylococcus aureus.These findings provide a new design strategy for engineering high-performance and functional epoxy thermoset with high biomass content.展开更多
The novel thermal stable composite nanofiltra-tion membranes were prepared through the interfacial polymerization of piperazine and trimesoyl chloride on the poly(phthalazinone ether)ultrafiltration substrate.The effe...The novel thermal stable composite nanofiltra-tion membranes were prepared through the interfacial polymerization of piperazine and trimesoyl chloride on the poly(phthalazinone ether)ultrafiltration substrate.The effects of polymerization and testing conditions on membrane performance were studied.The surface morphologies of the substrate and the composite mem-branes were observed by means of scanning electron microscopy(SEM)and atomic force microscopy(AFM).The separation properties of membranes for dyes and salts were tested.The composite membranes show good ther-mal stability.The rejection for Na2SO_(4) was kept over 96%,1.0 MPa and 80℃.When tested at 1.0 MPa and 60℃,the rejection of the composite membrane for dyes was kept at the rejection for NaCl was lower than 20%.展开更多
基金financially supported by National Key Research and Development Program of China(2017YFB0307600)Liaoning Revitalization Talents Program(XLYC1802073)Dalian High-level Talent Innovation Support Program(2019RD08)。
文摘Sulfolane is an important aprotic polar solvent.Liquid-liquid equilibrium(LLE)data for the ternary systems of water+1,2-dichloroethane+sulfolane were measured at temperatures of 288.15,298.15 and 308.15 K under the atmospheric pressure.The distribution coefficient and selectivity were determined from the measured LLE data,which showed that 1,2-dichloroethane is a suitable extractant for the recovery of sulfolane from its aqueous solution.The nonrandom two-liquid(NRTL)model and the universal quasi-chemical(UNIQUAC)model were utilized to correlate the experimental LLE data.The low values of RMSD indicated that the ternary system could be fitted well by the NRTL and UNIQUAC models.The consistency of the binary interaction parameters for the two thermodynamic models obtained was confirmed by the topological information contained in the Gibbs energy of mixing function(G^(M)/RT).
基金supports from the National Natural Science Foundation of China(21444006,21706164)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF2106)+3 种基金Liaoning Provincial Education Department(LJ2019005)Natural Science Foundation of Liaoning Province(2021-NLTS-12-01)Liaoning Revitalization Talents Program(XLYC1907029)Liaoning Provincial Science and Technology Department(2019-MS-261)is greatly appreciated.
文摘Swelling-induced morpholine functionalized adamantane-containing poly(aryl ether ketone) (MAPEK) membranes were prepared for vanadium flow batteries. MAPEK membranes were prepared from chloromethylated polymer and morpholine and further swelling-induced with hot phosphoric acid to obtain membranes with enhanced ionic conductivity. The swelling, selectivity, and ionic conductivity of MAPEK membranes were regulated by varying the swelling temperature. Selective swelling-induced microphase separation in MAPEK membranes, forming wider ion transport pathways and resulting in low area resistance. The unique rigid adamantane-containing backbone limited the swelling of membranes. Consequently, MAPEK membranes showed excellent selectivity and conductivity (vanadium ion permeability coefficient of MAPEK membranes was lower than 3.82 × 0−7 cm2min−1) (Nafion212 membrane, 42.5 × 0−7 cm2min−1), and MAPEK-150 membrane exhibited low area resistance (0.17 Ωcm2). The vanadium flow batteries (VFB) with MAPEK-150 membrane exhibited high energy efficiency (91.1% at 80 mAcm−2, 81.4% at 200 mAcm−2). Furthermore, MAPEK membranes showed good stability in VFB and oxidative electrolytes. The swelling-induced method utilized in this work is a versatile and facile method to enhance the conductivity of ion-exchange membranes.
基金National Outstanding Youth ScienceFund, Grant/Award Number: 52222314Near Space Technology and IndustryGuidance Fund Project, Grant/AwardNumber: LKJJ-2023010-01+3 种基金CNPCInnovation FoundDalian OutstandingYouth Science and Technology TalentProject, Grant/Award Number:2023RJ006Dalian Science andTechnology Innovation Project,Grant/Award Number: 2022JJ12GX022Xinghai Talent Cultivation Plan,Grant/Award Number: X20200303。
文摘Lithium metal batteries (LMBs) are desirable candidates owing to their highenergyadvantage for next-generation batteries. However, the practical applicationof LMBs continues to be constrained by thorny safety issues with the formationand growth of Li dendrites. Herein, the ZIF-67 MOFs are in situcoupled onto a single face of 3D porous nanofiber to fabricate an asymmetricJanus membrane, harnessing their anion adsorption capabilities to promotethe uniform deposition of Li ions. In addition, the poly(ethylene glycol)diacrylate and trifluoromethyl methacrylate are introduced into nanofiber skeletonto form Janus@GPE, which preferentially reacts with Li metal to form aLiF-rich stable SEI layer to inhibit Li dendrite growth. Importantly, the synergisticeffect of the MOFs and stable solid electrolyte interphase (SEI) layerresults in superior cycling performance, achieving a remarkable 2500 h cyclingat 1 mA cm^(-2) in the Li/Janus@GPE/Li configuration. In addition, theJanus@GPE electrolyte has a certain flame retardant, which can selfextinguishwithin 3 s, improving the safety performance of the batteries. Consequently,the Li/Janus@GPE/LFP flexible pouch cell exhibits favorablecycling stability (the capacity retention rate of 45 cycles is 91.8% at 0.1 C). Thiswork provides new insights and strategies to improve the safety and practicalutility of LMBs.
基金supported by Ningbo Key Research and Development Program(No.2022Z143)National Natural Science Foundation of China(No.U1837205)the Fundamental Research Funds for the Central University(No.DUT22LAB605).
文摘Currently,many cancer patients with bone defects are still threatened by tumor recurrence,postoperative bacterial infection,and massive bone loss.Many methods have been studied to endow bone implants with biocompatibility,but it is difficult to find an implant material that can simultaneously solve the problems of anticancer,antibacterial and bone promotion.Here,a multifunctional gelatin methacrylate/dopamine methacrylate adhesive hydrogel coating containing 2D black phosphorus(BP)nanoparticle protected by polydopamine(pBP)is prepared by photocrosslinking to modify the surface of poly(aryl ether nitrile ketone)containing phthalazinone(PPENK)implant.The multifunctional hydrogel coating works in conjunction with pBP,which can deliver drug through photothermal mediation and kill bacteria through photodynamic therapy at the initial phase followed by promotion of osteointegration.In this design,photothermal effect of pBP control the release of doxorubicin hydrochloride loaded via electrostatic attraction.Meanwhile,pBP can generate reactive oxygen species(ROS)to eliminate bacterial infection under 808 nm laser.In the slow degradation process,pBP not only effectively consumes excess ROS and avoid apoptosis induced by ROS in normal cells,but also degrade into PO43to promote osteogenesis.In summary,nanocomposite hydrogel coatings provide a promising strategy for treatment of cancer patients with bone defects.
基金The authors acknowledge the support from National Outstanding Youth Science Fund(NO.52222314)CNPC Innovation Found(2021DQ02-1001)+1 种基金Liao Ning Revitalization Talents Program(XLYC1907144)Xinghai Talent Cultivation Plan(X20200303).
文摘As their Liþtransference number(tLiþ),ionic conductivity,and safety are all high,polymer electrolytes play a vital role in overcoming uncontrollable lithium dendrites and low energy density in Li metal batteries(LMBs).We therefore synthesized a three-dimensional(3D)semi-interpenetrating network-based single-ion-conducting fiber–gel composite polymer electrolyte(FGCPE)via an electrospinning,initiation,and in situ polymerization method.The FGCPE provides high ionic conductivity(1.36 mS cm^(-1)),high t_(Li+)(0.92),and a high electrochemical stability window(up to 4.84 V).More importantly,the aromatic heterocyclic structure of the biphenyl in the nanofiber membrane promotes the carbonization of the system(the limiting oxygen index value of the nanofiber membrane reaches 41%),giving it certain flame-retardant properties and solving the source-material safety issue.Due to the in situ method,the observable physical interface between electrodes and electrolytes is virtually eliminated,yielding a compact whole that facilitates rapid kinetic reactions in the cell.More excitingly,the LFP/FGCPE/Li cell displays outstanding cycling stability,with a capacity retention of 91.6%for 500 cycles even at 10C.We also test the FGCPE in high-voltage NMC532/FGCPE/Li cells and pouch cells.This newly designed FGCPE exhibits superior potential and feasibility for promoting the development of LMBs with high energy density and safety.
基金supported by the National Natural Science Foundation of China (Nos. 51873027, 52073038 and 51673033)the Natural Science Foundation of Liaoning Province (No. 2019-ZD-0139)+1 种基金the Fundamental Research Funds for the Central Universities (No. DUT20TD114)the National Key Research and Development Program of China (No. 2017YFB0307600)。
文摘Bio-based epoxy thermoset prepared from renewable biomass raw materials can alleviate fossil energy crisis and reduce environmental pollution,which satisfies the needs of sustainable social development.In this study,a bio-based epoxy thermoset precursor(MGOL-EP) was synthesized from a naturally occurring magnolol through a facile and efficient one-step process.And the fully bio-based epoxy thermoset(MGOL-EP-SC) was obtained by self-curing without adding any other hardener.MGOL-EP-SC revealed an extremely high glass-transition temperature(T_(g)) of 265℃ and char yield of 53.2%(in N;),which were at the highest level among the fully bio-based epoxy thermosets reported so far.In addition,when the MGOL-EP was cured with 4,4’-methylenedianiline(DDM),T_(g)of the MGOL-EP/DDM was decreased by 61℃ and the other comprehensive performance had also been decreased,which was due to a reduction in biphenyl structure content and cross-linking density by adding the external curing agents.Moreover,the MGOL-EP-SC presented certain killing rate(48.4%) to Staphylococcus aureus.These findings provide a new design strategy for engineering high-performance and functional epoxy thermoset with high biomass content.
基金supported by the National High Technology Research and Development Program of China(No.2003AA33G030)the National Basic Research Program of China(No.2003CB615700).
文摘The novel thermal stable composite nanofiltra-tion membranes were prepared through the interfacial polymerization of piperazine and trimesoyl chloride on the poly(phthalazinone ether)ultrafiltration substrate.The effects of polymerization and testing conditions on membrane performance were studied.The surface morphologies of the substrate and the composite mem-branes were observed by means of scanning electron microscopy(SEM)and atomic force microscopy(AFM).The separation properties of membranes for dyes and salts were tested.The composite membranes show good ther-mal stability.The rejection for Na2SO_(4) was kept over 96%,1.0 MPa and 80℃.When tested at 1.0 MPa and 60℃,the rejection of the composite membrane for dyes was kept at the rejection for NaCl was lower than 20%.