期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Different coding characteristics between flight and freezing in dorsal periaqueductal gray of mice during exposure to innate threats
1
作者 Denghui liu shouhao li +3 位作者 liqing Ren Xinyu liu Xiaoyuan li Zhenlong Wang 《Animal Models and Experimental Medicine》 CAS CSCD 2022年第6期491-501,共11页
Background:Flight and freezing are two vital defensive behaviors that mice display to avoid natural enemies.When they are exposed to innate threats,visual cues are processed and transmitted by the visual system into t... Background:Flight and freezing are two vital defensive behaviors that mice display to avoid natural enemies.When they are exposed to innate threats,visual cues are processed and transmitted by the visual system into the emotional nuclei and finally transmitted to the periaqueductal gray(PAG)to induce defensive behaviors.However,how the dorsal PAG(dPAG)encodes the two defensive behaviors is unclear.Methods:Multi-array electrodes were implanted in the dPAG nuclei of C57BL/6 mice.Two kinds of visual stimuli(looming and sweeping)were used to induce defensive behaviors in mice.Neural signals under different defense behaviors were recorded,and the encoding characteristics of the two behaviors were extracted and analyzed from spike firing and frequency oscillations.Finally,synchronization of neural activity during the defense process was analyzed.Results:The neural activity between flight and freezing behaviors showed different firing patterns,and the differences in the inter-spike interval distribution were mainly reflected in the 2–10 ms period.The frequency band activities under both defensive behaviors were concentrated in the theta band;the active frequency of flight was~8to 10 Hz,whereas that of freezing behavior was~6 to 8 Hz.The network connection density under both defense behaviors was significantly higher than the period before and after defensive behavior occurred,indicating that there was a high synchronization of neural activity during the defense process.Conclusions:The dPAG nuclei of mice have different coding features between flight and freezing behaviors;during strong looming stimulation,fast neuro-i nstinctive decision making is required while encountering weak sweeping stimulation,and computable planning late behavior is predicted in the early stage.The frequency band activities under both defensive behaviors were concentrated in the theta band.There was a high synchronization of neural activity during the defense process,which may be a key factor triggering different defensive behaviors. 展开更多
关键词 C57BL/6 mice dorsal periaqueductal gray flight and freezing innate threats neural coding
下载PDF
石墨烯材料在天线技术中的应用 被引量:2
2
作者 柳絮 孙霄 +3 位作者 李守豪 杨飞要 李科 魏迪 《科学通报》 EI CAS CSCD 北大核心 2020年第35期4107-4122,共16页
电子信息产业是全球产业中重要的组成部分,通讯产业是电子信息产业的基础,而天线技术更是通讯产业的基础.石墨烯被预言是下一代逻辑器件的主要材料,同时由于其优异的透光性和柔韧性,有望实现普通硅基材料所不能实现的透明、弯折功能,从... 电子信息产业是全球产业中重要的组成部分,通讯产业是电子信息产业的基础,而天线技术更是通讯产业的基础.石墨烯被预言是下一代逻辑器件的主要材料,同时由于其优异的透光性和柔韧性,有望实现普通硅基材料所不能实现的透明、弯折功能,从而成为智能可穿戴材料的重要组成部分.为满足5G技术的超高频波段响应、不同地区手机电磁波谱吸收频段不同、物联网追踪以及透明防伪等技术需求,本课题组成功制备出世界首款柔性透明石墨烯射频天线,实现了柔性和透明的结合,展现出优异的性能和稳定性.利用石墨烯带隙可调特性和宽光谱吸收的特点,实现不同频段电磁波谱吸收,以满足天线对多频谱的适用性.通过改变石墨烯的层数、构型以及导电性实现天线多个频谱的调节,避免通过不同物理开关调控频段所造成的复杂性,从而将不同天线整合在一个石墨烯天线系统内,大大降低天线占用器件内部的体积并减少功耗.同时,本课题组开发了可打印石墨烯墨水,设计并制备可调谐缝隙天线,通过外加电压的方式,可以达到带宽和谐振频率的调节.本文基于本课题组的研究,对石墨烯材料在柔性透明天线和可调谐天线领域的进展进行了总结. 展开更多
关键词 高品质石墨烯薄膜 可打印石墨烯墨水 柔性透明射频天线 5G 可调谐天线
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部