期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The ERF transcription factor LTF1 activates DIR1 to control stereoselective synthesis of antiviral lignans and stress defense in Isatis indigotica roots 被引量:1
1
作者 Ruibing Chen Jian Yu +9 位作者 Luyao Yu Liang Xiao Ying Xiao Junfeng Chen shouhong gao Xianghui Chen Qing Li Henan Zhang Wansheng Chen Lei Zhang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2024年第1期405-420,共16页
Lignans are a powerful weapon for plants to resist stresses and have diverse bioactive functions to protect human health.Elucidating the mechanisms of stereoselective biosynthesis and response to stresses of lignans i... Lignans are a powerful weapon for plants to resist stresses and have diverse bioactive functions to protect human health.Elucidating the mechanisms of stereoselective biosynthesis and response to stresses of lignans is important for the guidance of plant improvement.Here,we identified the complete pathway to stereoselectively synthesize antiviral(-)-lariciresinol glucosides in Isatis indigotica roots,which consists of three-step sequential stereoselective enzymes DIR1/2,PLR,and UGT71B2.DIR1 was further identified as the key gene in respoJanuary 2024nse to stresses and was able to trigger stress defenses by mediating the elevation in lignan content.Mechanistically,the phytohormone-responsive ERF transcription factor LTF1 colocalized with DIR1 in the cell periphery of the vascular regions in mature roots and helped resist biotic and abiotic stresses by directly regulating the expression of DIR1.These systematic results suggest that DIR1 as the first common step of the lignan pathway cooperates with PLR and UGT71B2 to stereoselectively synthesize(-)-lariciresinol derived antiviral lignans in I.indigotica roots and is also a part of the LTF1-mediated regulatory network to resist stresses.In conclusion,the LTF1-DIR1 module is an ideal engineering target to improve plant Defenses while increasing the content of valuable lignans in plants. 展开更多
关键词 Lignans Stereoselective synthesis Stress resistance Dirigent protein ERF
原文传递
TRICHOMEAND ARTEMISININ REGULATOR 1 Is Required for Trichome Development and Artemisinin Biosynthesis in Artemisia annua 被引量:40
2
作者 Hexin Tan Ling Xiao +7 位作者 shouhong gao Qing Li Junfeng Chen Ying Xiao Qian Ji Ruibing Chen Wansheng Chen Lei Zhang 《Molecular Plant》 SCIE CAS CSCD 2015年第9期1396-1411,共16页
Trichomes, small protrusions on the surface of many plant species, can produce and store various secondary metabolic products. Artemisinin, the most famous and potent medicine for malaria, is synthesized, stored, and ... Trichomes, small protrusions on the surface of many plant species, can produce and store various secondary metabolic products. Artemisinin, the most famous and potent medicine for malaria, is synthesized, stored, and secreted by Artemisia annua trichomes. However, the molecular basis regulating the biosynthesis of artemisinin and the development of trichomes in A. annua remains poorly understood. Here, we report that an AP2 transcription factor, TRICHOME AND ARTEMISININ REGULATOR 1 (TAR1), plays crucial roles in regulating the development of trichomes and the biosynthesis of artemisinin in A. annua. TAR1, which encodes a protein specially located in the nucleus, is mainly expressed in young leaves, flower buds, and some trichomes. In TAR1-RNAi lines, the morphology of trichomes and the composition of cuticular wax were altered, and the artemisinin content was dramatically reduced, which could be significantly increased by TAR1 oeverexpression. Expression levels of several key genes that are involved in artemisinin biosynthesis were altered when TAR1 was silenced or overexpressed. By the electrophoretic mobility shift, yeast one-hybrid and transient transformation β-glucuronidase assays, we showed that ADS and CYP71AV1, two key genes in the biosynthesis pathway of artemisinin, are likely the direct targets of TAR1. Taken together, our results indicate that TAR1 is a key component of the molecular network regulating trichome development and artemisinin biosynthesis in A. annua. 展开更多
关键词 Artemisia annua ARTEMISININ TRICHOME AP2 transcription factor WAX
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部