期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Incorporating DeepLabv3+and object-based image analysis for semantic segmentation of very high resolution remote sensing images 被引量:12
1
作者 shouji du Shihong du +1 位作者 Bo Liu Xiuyuan Zhang 《International Journal of Digital Earth》 SCIE 2021年第3期357-378,共22页
Semantic segmentation of remote sensing images is an important but unsolved problem in the remote sensing society.Advanced image semantic segmentation models,such as DeepLabv3+,have achieved astonishing performance fo... Semantic segmentation of remote sensing images is an important but unsolved problem in the remote sensing society.Advanced image semantic segmentation models,such as DeepLabv3+,have achieved astonishing performance for semantically labeling very high resolution(VHR)remote sensing images.However,it is difficult for these models to capture the precise outlines of ground objects and explore the context information that revealing relationships among image objects for optimizing segmentation results.Consequently,this study proposes a semantic segmentation method for VHR images by incorporating deep learning semantic segmentation model(DeepLabv3+)and objectbased image analysis(OBIA),wherein DSM is employed to provide geometric information to enhance the interpretation of VHR images.The proposed method first obtains two initial probabilistic labeling predictions using a DeepLabv3+network on spectral image and a random forest(RF)classifier on hand-crafted features,respectively.These two predictions are then integrated by Dempster-Shafer(D-S)evidence theory to be fed into an object-constrained higher-order conditional random field(CRF)framework to estimate the final semantic labeling results with the consideration of the spatial contextual information.The proposed method is applied to the ISPRS 2D semantic labeling benchmark,and competitive overall accuracies of 90.6%and 85.0%are achieved for Vaihingen and Potsdam datasets,respectively. 展开更多
关键词 Semantic segmentation DeepLabv3+ object-based image analysis DempsterShafer evidence theory conditional random field VHR images
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部