期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Lignite-Based Hierarchical Porous C/SiO_(x)Composites as High-Performance Anode for Potassium-Ion Batteries
1
作者 Zexu Yang shouwang zhao +7 位作者 Rongji Jiao Gengyu Hao Yunying Liu Wenxiu He Jingwei Chen Guixiao Jia Jinlong Cui Shaohui Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期107-117,共11页
Silicon oxide(SiO_(x),0<x≤2)has been recognized as a prominent anode material in lithium-ion batteries and sodium-ion batteries due to its high theoretical capacity,suitable electrochemical potential,and earth abu... Silicon oxide(SiO_(x),0<x≤2)has been recognized as a prominent anode material in lithium-ion batteries and sodium-ion batteries due to its high theoretical capacity,suitable electrochemical potential,and earth abundance.However,it is intrinsically poor electronic conductivity and excessive volume expansion during potassiation/depotassiation process hinder its application in potassium-ion batteries.Herein,we reported a hierarchical porous C/SiO_(x)potassium-ion batteries anode using lignite as raw material via a one-step carbonization and activation method.The amorphous C skeleton around SiO_(x)particles can effectively buffer the volume expansion,and improve the ionic/electronic conductivity and structural integrity,achieving outstanding rate capability and cyclability.As expected,the obtained C/SiO_(x)composite delivers a superb specific capacity of 370 mAh g^(-1)at 0.1 A g^(-1)after 100 cycles as well as a highly reversible capacity of 208 mAh g^(-1)after 1200 cycles at 1.0 A g^(-1).Moreover,the potassium ion storage mechanism of C/SiO_(x)electrodes was investigated by ex-situ X-ray diffraction and transmission electron microscopy,revealing the formation of reversible products of K_(6.8)Si_(45.3)and K_(4)SiO_(4),accompanied by generation of irreversible K2O after the first cycle.This work sheds light on designing low-cost Si-based anode materials for high-performance potassium-ion batteries and beyond. 展开更多
关键词 ANODE hierarchical porous C/SiO_(x) K_(4)SiO_(4) LIGNITE potassium-ion batteries
下载PDF
Al掺杂的锂离子电池层状正极材料Li(Li_(0.17)Ni_(0.17)Al_(0.04)Fe_(0.13)Mn_(0.49))O_(2)结构稳定性及氧离子氧化的理论研究 被引量:4
2
作者 邱凯 严铭霞 +3 位作者 赵守旺 安胜利 王玮 贾桂霄 《化学学报》 SCIE CAS CSCD 北大核心 2021年第9期1146-1153,共8页
锂离子电池(LIB)正极材料比容量及结构稳定性的提高是提升电池整体性能的重要因素.本工作选取层状无钴正极材料Li(Li_(0.17)Ni_(0.17)Al_(0.04)Fe_(0.13)Mn_(0.49))O_(2) (LNAFMO)为研究对象,使用GGA (generalized gradient approximati... 锂离子电池(LIB)正极材料比容量及结构稳定性的提高是提升电池整体性能的重要因素.本工作选取层状无钴正极材料Li(Li_(0.17)Ni_(0.17)Al_(0.04)Fe_(0.13)Mn_(0.49))O_(2) (LNAFMO)为研究对象,使用GGA (generalized gradient approximation)+U (Hubbard U value)方法研究了体系在充电时几何和电子结构变化、氧释放焓、脱锂形成能和脱锂电压.研究结果表明,充电时LNAFMO体系首先Ni氧化,然后Fe氧化,最后O氧化.与未掺杂Al的Li(Li_(0.17)Ni_(0.17)Fe_(0.17)Mn_(0.49))O_(2) (LNFMO)体系不同的是,除具有线性Li-O-Li和Fe-O-Li构型的氧离子更容易给出电子外,具有线性Al-O-Li构型的氧离子也参与电荷补偿,并且氧离子具有很强的活性,这将避免参与氧化的氧离子过分集中,有利于结构的稳定;Al的掺杂能进一步抑制氧的释放,这将提升体系的结构稳定性和电池循环性能.该研究为设计一种低经济成本、循环性良好、高能量密度的锂离子电池正极材料奠定了坚实的理论依据. 展开更多
关键词 锂离子电池 富锂正极材料 掺杂 阴离子氧化 第一性原理计算
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部