The development of thermodynamically controllable synthetic strategy to manipulate the morphology of ZIF-8 without capping agent is essential to help understanding their facet effect and the structure-activity relatio...The development of thermodynamically controllable synthetic strategy to manipulate the morphology of ZIF-8 without capping agent is essential to help understanding their facet effect and the structure-activity relationship of single atom catalysts derived from ZIF-8.Here,we prepared ZIF-8 with different morphologies(cube,truncated rhombododecahedral and rhombododecahedral)and thus area ratio of exposed{100},{110}facets by a thermodynamically controllable synthetic strategy.When the reaction proceeds under room temperature(30℃),the assembling of ZIF-8 followed an area-reducing layered growth mode,while switched to an integral layered growth mode at lower temperature-40℃.Moreover,this strategy also works to obtain ZIF-8 encapsulated with metal precursors(Fe(acac)_(3),Cu(acac)_(2)and Co(acac)_(2)).Single Fe atom anchored on nitrogen doped carbon catalysts(SA-Fe/CN)derived from Fe-ZIF-8 retain their original morphologies and the unsaturated surface-active sites on{100}facet,which further displays different catalytic performance towards oxygen reduction reaction(ORR).This work not only reveals the different growth pattern of ZIF-8,but also points out a new direction for designing and synthesizing MOFs with different morphology rationally.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.22102218)the Natural Science Foundation of Hunan Province(No.2020JJ4684)+1 种基金the science and technology innovation Program of Hunan Province(No.2022RC1110)the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University(No.CSUZC202221).
文摘The development of thermodynamically controllable synthetic strategy to manipulate the morphology of ZIF-8 without capping agent is essential to help understanding their facet effect and the structure-activity relationship of single atom catalysts derived from ZIF-8.Here,we prepared ZIF-8 with different morphologies(cube,truncated rhombododecahedral and rhombododecahedral)and thus area ratio of exposed{100},{110}facets by a thermodynamically controllable synthetic strategy.When the reaction proceeds under room temperature(30℃),the assembling of ZIF-8 followed an area-reducing layered growth mode,while switched to an integral layered growth mode at lower temperature-40℃.Moreover,this strategy also works to obtain ZIF-8 encapsulated with metal precursors(Fe(acac)_(3),Cu(acac)_(2)and Co(acac)_(2)).Single Fe atom anchored on nitrogen doped carbon catalysts(SA-Fe/CN)derived from Fe-ZIF-8 retain their original morphologies and the unsaturated surface-active sites on{100}facet,which further displays different catalytic performance towards oxygen reduction reaction(ORR).This work not only reveals the different growth pattern of ZIF-8,but also points out a new direction for designing and synthesizing MOFs with different morphology rationally.