Iron is an essential component of oxidative metabolism and a cofactor for a variety of enzymes. Because of its chemical properties as a transition metal, iron can serve both as an electron donor and acceptor and, as s...Iron is an essential component of oxidative metabolism and a cofactor for a variety of enzymes. Because of its chemical properties as a transition metal, iron can serve both as an electron donor and acceptor and, as such, excess levels of free iron are toxic. Given this potential for toxicity, a number of pro- teins, including transferrin, transferrin receptor, and ferritin, tightly control iron transport, uptake, and storage in the central nervous system. Patients with Parkinson's disease (PD) show a dramatic increase in iron content in dopaminergic neurons of the substantia nizra,展开更多
文摘Iron is an essential component of oxidative metabolism and a cofactor for a variety of enzymes. Because of its chemical properties as a transition metal, iron can serve both as an electron donor and acceptor and, as such, excess levels of free iron are toxic. Given this potential for toxicity, a number of pro- teins, including transferrin, transferrin receptor, and ferritin, tightly control iron transport, uptake, and storage in the central nervous system. Patients with Parkinson's disease (PD) show a dramatic increase in iron content in dopaminergic neurons of the substantia nizra,