The reaction characteristics of phenolic hydroxyl group were studied under the conditions of direct coal liquefaction. 2-naphthol was used as a coal model compound in this study. Under the conditions of with and witho...The reaction characteristics of phenolic hydroxyl group were studied under the conditions of direct coal liquefaction. 2-naphthol was used as a coal model compound in this study. Under the conditions of with and without catalysts, a series of experiments were conducted at different temperatures, pressures and reaction time. Gas chromatography-mass spectrometry and gas chromatography were used to identify and quantify the reactants and products respectively. The conversion of 2-naphthol rises with the increase of reaction temperature, initial pressure and catalyst amount. The results indicated that tem- perature had a significant effect on 2-naphthol conversion, which promoted the dehydroxylation reaction. However, initial pressure had an important influence on the hydrogenation of 2-naphthol and naphthalene. The iron catalyst plays a significant role of cracking instead of hydrogenation. It is concluded that the harsh reaction conditions of high temperature, high pressure, and more catalyst are conducive to promoting dehydroxylation of 2-naphthol. The reaction mechanism was put forward based the experimental results, in which 2-tetralone was an intermediate.展开更多
文摘The reaction characteristics of phenolic hydroxyl group were studied under the conditions of direct coal liquefaction. 2-naphthol was used as a coal model compound in this study. Under the conditions of with and without catalysts, a series of experiments were conducted at different temperatures, pressures and reaction time. Gas chromatography-mass spectrometry and gas chromatography were used to identify and quantify the reactants and products respectively. The conversion of 2-naphthol rises with the increase of reaction temperature, initial pressure and catalyst amount. The results indicated that tem- perature had a significant effect on 2-naphthol conversion, which promoted the dehydroxylation reaction. However, initial pressure had an important influence on the hydrogenation of 2-naphthol and naphthalene. The iron catalyst plays a significant role of cracking instead of hydrogenation. It is concluded that the harsh reaction conditions of high temperature, high pressure, and more catalyst are conducive to promoting dehydroxylation of 2-naphthol. The reaction mechanism was put forward based the experimental results, in which 2-tetralone was an intermediate.