期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sn nanoparticles embedded into porous hydrogel-derived pyrolytic carbon as composite anode materials for lithium-ion batteries 被引量:3
1
作者 Guan-Li Xu Yu-Dong Gong +6 位作者 Chang Miao Qing Wang shu-qing nie Yu Xin Min-Yue Wen Jian Liu Wei Xiao 《Rare Metals》 SCIE EI CAS CSCD 2022年第10期3421-3431,共11页
The composite powders,Sn nanoparticles embedded into the porous hydrogel-derived carbon(Sn@PHDC),were successfully prepared by polymerization and calcination processes,and the characterization results confirmed that S... The composite powders,Sn nanoparticles embedded into the porous hydrogel-derived carbon(Sn@PHDC),were successfully prepared by polymerization and calcination processes,and the characterization results confirmed that Sn nanoparticles were homogeneously dispersed in the porous hydrogel-derived pyrolytic carbon.The coin cell assembled with the Sn@PHDC-50 composite electrode presented good cyclic stability and rate performance when the weight ratio of Sn nanoparticles to hydrogel-derived pyrolytic carbon was maintained at 1:1.Moreover,the Sn@PHDC-50 electrode manifested a lower charge transfer resistance of 58.57 Ω and a higher lithium ions diffusion coefficient of 1.117×10^(-14) cm^(2)·s^(-1) than pure Sn and other Sn@PHDC electrodes.Those improvements can be partly ascribed to the fact that the hydrogelderived pyrolytic c arbon matrix can release the volume strain and enhance the electronic conductivity of the composite electrode,and partly to the fact that the porous hydrogelderived pyrolytic carbon matrix can suppress agglomerations of Sn nanoparticles and shorten Li^(+) diffusion paths.This work may provide a new appro ach for the improvement of Sn-based anode materials for lithium-ion batteries. 展开更多
关键词 Sn nanoparticles HYDROGEL Composite anode Electrochemical performance Lithium-ion battery
原文传递
Dual modification of LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2) cathode materials by K^(+) doping and Li_(3)PO_(4) coating for lithium ions batteries
2
作者 Wei Xiao Jia-Le Wang +4 位作者 Zhi-Cheng Yi Cheng-Jin Liu Chang Miao Yu Xin shu-qing nie 《Rare Metals》 SCIE EI CAS 2024年第7期3007-3018,共12页
Li_(3)PO_(4)@Li_(0.99)K_(0.01)Ni_(0.83)Co_(0.11)Mn_(O.06)O_(2)(NCM-KP) cathode powders are synthesized via K^(+)doping in calcination processes and H_3PO_4 coating in sol-gel processes.K^(+) precisely enters into the ... Li_(3)PO_(4)@Li_(0.99)K_(0.01)Ni_(0.83)Co_(0.11)Mn_(O.06)O_(2)(NCM-KP) cathode powders are synthesized via K^(+)doping in calcination processes and H_3PO_4 coating in sol-gel processes.K^(+) precisely enters into the lattice to widen the(003) plane to 0.4746 nm with a lower cationic disordered degree of 1.87%.Moreover,the surface residual lithium salts are treated by H_3PO_4 to generate a uniform Li_(3)PO_(4) coating layer of approximately 11.41 nm,which completely covers on the surface of secondary spherical particles to improve the interfacial stability.At 25℃,the NCM-KP electrode delivers a discharge specific capacity of 148.9 mAh·g^(-1) with a remarkable capacity retention ratio of 84.1% after 200 cycles at 1.0C and retains a high reversible specific capacity of 154.4 mAh·g^(-1) at 5.0C.Even at 1.0C and 60℃,it can maintain a reversible discharge specific capacity of 114.6 mAh·g^(-1) with 0.21% of capacity decay per cycle after 200 cycles,which is significantly lower than 0.40% for the pristine NCM powders.Importantly,the charge transfer resistance of 238.89 Ω for the NCM-KP electrode is significantly lower than 947.41 Ω for the pristine NCM one by restricting the interfacial side reactions.Therefore,combining K+doping and Li_(3)PO_(4) coating is an effective strategy to enable the significant improvement of the electrochemical property of high-nickel cathode materials,which may be mainly attributed to the widened diffusion pathway and the formed Li_(3)PO_(4) protective layer,thus promoting Li~+diffusion rate and preventing the erosion of HF. 展开更多
关键词 High-nickel cathode material Residual lithium K^(+)doping Li_(3)PO_(4)coating Lithium ions battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部