Type 2 diabetes mellitus(T2DM),which is distinguished by increased glucose levels in the bloodstream,is a metabolic disease with a rapidly increasing incidence worldwide.Nevertheless,the etiology and characteristics o...Type 2 diabetes mellitus(T2DM),which is distinguished by increased glucose levels in the bloodstream,is a metabolic disease with a rapidly increasing incidence worldwide.Nevertheless,the etiology and characteristics of the mechanism of T2DM remain unclear.Recently,abundant evidence has indicated that the intestinal microbiota is crucially involved in the initiation and progression of T2DM.The gut microbiome,the largest microecosystem,engages in material and energy metabolism in the human body.In this review,we concentrated on the correlation between the gut flora and T2DM.Meanwhile,we summarized the pathogenesis involving the intestinal flora in T2DM,as well as therapeutic approaches aimed at modulating the gut microbiota for the management of T2DM.Through the analysis presented here,we draw attention to further exploration of these research directions.展开更多
Phase field simulations of phase separation in Fe-Cr binary alloys were performed by using the Cahn-Hilliard diffusion function. A new mobility model in relation to aging temperature and Cr content was used in the sim...Phase field simulations of phase separation in Fe-Cr binary alloys were performed by using the Cahn-Hilliard diffusion function. A new mobility model in relation to aging temperature and Cr content was used in the simulations. Two alloys of Fe-30at%Cr and Fe-35at%Cr were investigated at two different aging temperatures of 573 and 673 K. The phase separation kinetics was found to consist of three stages: wavelength modulation, amplitude increase, and coarsening of Cr-enriched regions. A higher thermal aging temperature accelerated the phase separation and increased the wavelength of concentration fluctuation. While the effect of Cr content on the phase separation kinetics was slight, Fe-Cr alloys with a higher Cr content were found to generate a larger number and a finer size of Cr-enriched regions. The simulation results provide consultation for design and safe operation of duplex stainless steel pipes in nuclear power plants.展开更多
We investigate the dephasing mechanisms induced by the charge noise and microwave heating effect acting on a graphene double quantum dot (DQD) capacitively coupled to a microwave resonator. The charge noise is obtai...We investigate the dephasing mechanisms induced by the charge noise and microwave heating effect acting on a graphene double quantum dot (DQD) capacitively coupled to a microwave resonator. The charge noise is obtained from DC transport current, and its contribution to dephasing is simultaneously determined by the amplitude response of the microwave resonator. A lowfrequency 1/f-type noise is demonstrated to be the dominant factor of the dephasing of graphene DQD. Furthermore, when the applied microwave power is larger than -90 dBm, the dephasing rate of graphene DQD increases rapidly with the increase of microwave power, and fluctuates slightly with the applied microwave power smaller than -90 dBm. Our results can be applied to suppress the impeditive influence on the dephasing of graphene-based devices associated with microwave input in the perspective investigations.展开更多
Visual object tracking plays an important role in intelligent aerial surveillance by unmanned aerial vehicles(UAV). In ordinary applications, aerial videos are captured by cameras with a fixed-focus lens or a zoom l...Visual object tracking plays an important role in intelligent aerial surveillance by unmanned aerial vehicles(UAV). In ordinary applications, aerial videos are captured by cameras with a fixed-focus lens or a zoom lens, for which the field-of-view(FOV)of the camera is fixed or smoothly changed. In this paper, a special application of the visual tracking in aerial videos captured by the dual FOV camera is introduced, which is different from ordinary applications since the camera quickly switches its FOV during the capturing. Firstly, the tracking process with the dual FOV camera is analyzed, and a conclusion is made that the critical part for the whole process depends on the accurate tracking of the target at the moment of FOV switching. Then, a cascade mean shift tracker is proposed to deal with the target tracking under FOV switching. The tracker utilizes kernels with multiple bandwidths to execute mean shift locating, which is able to deal with the abrupt motion of the target caused by FOV switching. The target is represented by the background weighted histogram to make it well distinguished from the background, and a modification is made to the weight value in the mean shift process to accelerate the convergence of the tracker. Experimental results show that our tracker presents a good performance on both accuracy and efficiency for the tracking. To the best of our knowledge, this paper is the first attempt to apply a visual object tracking method to the situation where the FOV of the camera switches in aerial videos.展开更多
基金Jilin Provincial Science and Technology Department,No.20210204029YYJilin Provincial Natural Science Foundation Projects,No.YDZJ202201ZYTS151.
文摘Type 2 diabetes mellitus(T2DM),which is distinguished by increased glucose levels in the bloodstream,is a metabolic disease with a rapidly increasing incidence worldwide.Nevertheless,the etiology and characteristics of the mechanism of T2DM remain unclear.Recently,abundant evidence has indicated that the intestinal microbiota is crucially involved in the initiation and progression of T2DM.The gut microbiome,the largest microecosystem,engages in material and energy metabolism in the human body.In this review,we concentrated on the correlation between the gut flora and T2DM.Meanwhile,we summarized the pathogenesis involving the intestinal flora in T2DM,as well as therapeutic approaches aimed at modulating the gut microbiota for the management of T2DM.Through the analysis presented here,we draw attention to further exploration of these research directions.
基金the National High-Tech Research and Development Program of China(Nos.2012AA03A507 and 2012AA050901)the Na-tional Science and Technology Major Project of China(No.2011ZX06004)
文摘Phase field simulations of phase separation in Fe-Cr binary alloys were performed by using the Cahn-Hilliard diffusion function. A new mobility model in relation to aging temperature and Cr content was used in the simulations. Two alloys of Fe-30at%Cr and Fe-35at%Cr were investigated at two different aging temperatures of 573 and 673 K. The phase separation kinetics was found to consist of three stages: wavelength modulation, amplitude increase, and coarsening of Cr-enriched regions. A higher thermal aging temperature accelerated the phase separation and increased the wavelength of concentration fluctuation. While the effect of Cr content on the phase separation kinetics was slight, Fe-Cr alloys with a higher Cr content were found to generate a larger number and a finer size of Cr-enriched regions. The simulation results provide consultation for design and safe operation of duplex stainless steel pipes in nuclear power plants.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301700)the National Natural Science Foundation of China(Grant Nos.61674132,11674300,11575172,and 11625419)the Anhui Initiative in Quantum information Technologies,China(Grant No.AHY080000)
文摘We investigate the dephasing mechanisms induced by the charge noise and microwave heating effect acting on a graphene double quantum dot (DQD) capacitively coupled to a microwave resonator. The charge noise is obtained from DC transport current, and its contribution to dephasing is simultaneously determined by the amplitude response of the microwave resonator. A lowfrequency 1/f-type noise is demonstrated to be the dominant factor of the dephasing of graphene DQD. Furthermore, when the applied microwave power is larger than -90 dBm, the dephasing rate of graphene DQD increases rapidly with the increase of microwave power, and fluctuates slightly with the applied microwave power smaller than -90 dBm. Our results can be applied to suppress the impeditive influence on the dephasing of graphene-based devices associated with microwave input in the perspective investigations.
基金supported by National Natural Science Foundation of China(Nos.61175032,61302154 and 61304096)
文摘Visual object tracking plays an important role in intelligent aerial surveillance by unmanned aerial vehicles(UAV). In ordinary applications, aerial videos are captured by cameras with a fixed-focus lens or a zoom lens, for which the field-of-view(FOV)of the camera is fixed or smoothly changed. In this paper, a special application of the visual tracking in aerial videos captured by the dual FOV camera is introduced, which is different from ordinary applications since the camera quickly switches its FOV during the capturing. Firstly, the tracking process with the dual FOV camera is analyzed, and a conclusion is made that the critical part for the whole process depends on the accurate tracking of the target at the moment of FOV switching. Then, a cascade mean shift tracker is proposed to deal with the target tracking under FOV switching. The tracker utilizes kernels with multiple bandwidths to execute mean shift locating, which is able to deal with the abrupt motion of the target caused by FOV switching. The target is represented by the background weighted histogram to make it well distinguished from the background, and a modification is made to the weight value in the mean shift process to accelerate the convergence of the tracker. Experimental results show that our tracker presents a good performance on both accuracy and efficiency for the tracking. To the best of our knowledge, this paper is the first attempt to apply a visual object tracking method to the situation where the FOV of the camera switches in aerial videos.