Miniature inverted-repeat transposable elements(MITEs)are a group of DNA transposable element(TE)which preferentially distributed with gene associated regions.Tens of MITEs families have been revealed in Brassica napu...Miniature inverted-repeat transposable elements(MITEs)are a group of DNA transposable element(TE)which preferentially distributed with gene associated regions.Tens of MITEs families have been revealed in Brassica napus genome,they scatter across the genome with tens of thousands copies and produce polymorphisms both intra-and inter-species.Our previous studies revealed a Tourist-like MITE,Monkey King,associated with vernalization requirement of B.napus,however there are still few studies reveal MITE association with agricultural traits in B.napus.In the present study,80 polymorphic markers were developed from 55 MITEs,and used to evaluate genetic diversity in a panel of B.napus accessions consisting of 101 natural and 25 synthetic genotypes.Five agricultural traits,oil content,glucosinolate content,erucic acid content,weight of thousand seeds(WTS)and plant height,were investigated across 3-years field experiments,in addition,two traits,hypocotyl length and root length,were evaluated at the 4-leaf stage in the laboratory.Correlations between the MITE-based markers and seven traits were analyzed,finally,10 polymorphic markers produced by 6 pairs of MITE specific primers were revealed relatively high correlation with 5 traits.Two polymorphic markers were anchored with two candidate genes,BnaA02g13530D and BnaA08g20010D,respectively,which may contribute to glucosinolate content and WTS.This research may contribute to genetic improvement through utilization of MITE-induced polymorphisms in Brassica species.展开更多
Tm3+-doped 2-μm lasers benefit many applications such as atmospheric sensing, medical treatment, and spec- troscopy [1-3]. Therefore, in the past two decades, both continuous-wave (CW) and pulse operations have be...Tm3+-doped 2-μm lasers benefit many applications such as atmospheric sensing, medical treatment, and spec- troscopy [1-3]. Therefore, in the past two decades, both continuous-wave (CW) and pulse operations have been widely researched in Tm3+-doped bulk materials and fibers [4-7].展开更多
基金supported by National Natural Science Foundation of China(No.31501341)Outstanding Youth Foundation of Henan Academy of Agricultural Sciences(No.2016YQ29).
文摘Miniature inverted-repeat transposable elements(MITEs)are a group of DNA transposable element(TE)which preferentially distributed with gene associated regions.Tens of MITEs families have been revealed in Brassica napus genome,they scatter across the genome with tens of thousands copies and produce polymorphisms both intra-and inter-species.Our previous studies revealed a Tourist-like MITE,Monkey King,associated with vernalization requirement of B.napus,however there are still few studies reveal MITE association with agricultural traits in B.napus.In the present study,80 polymorphic markers were developed from 55 MITEs,and used to evaluate genetic diversity in a panel of B.napus accessions consisting of 101 natural and 25 synthetic genotypes.Five agricultural traits,oil content,glucosinolate content,erucic acid content,weight of thousand seeds(WTS)and plant height,were investigated across 3-years field experiments,in addition,two traits,hypocotyl length and root length,were evaluated at the 4-leaf stage in the laboratory.Correlations between the MITE-based markers and seven traits were analyzed,finally,10 polymorphic markers produced by 6 pairs of MITE specific primers were revealed relatively high correlation with 5 traits.Two polymorphic markers were anchored with two candidate genes,BnaA02g13530D and BnaA08g20010D,respectively,which may contribute to glucosinolate content and WTS.This research may contribute to genetic improvement through utilization of MITE-induced polymorphisms in Brassica species.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0701000)the Science and Technology Major Project of Fujian Province of China(Grant No.2014HZ0001-2)the Construction of Fujian Science and Technology Innovation Platform(Grant No.2014H2007)
文摘Tm3+-doped 2-μm lasers benefit many applications such as atmospheric sensing, medical treatment, and spec- troscopy [1-3]. Therefore, in the past two decades, both continuous-wave (CW) and pulse operations have been widely researched in Tm3+-doped bulk materials and fibers [4-7].