Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su...Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.展开更多
Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative...Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations.展开更多
The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga...The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.展开更多
The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder ...The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder their applicability to edge devices,despite their satisfactory reconstruction performance.These methods commonly use standard convolutions,which increase the convolutional operation cost of the model.In this paper,a lightweight Partial Separation and Multiscale Fusion Network(PSMFNet)is proposed to alleviate this problem.Specifically,this paper introduces partial convolution(PConv),which reduces the redundant convolution operations throughout the model by separating some of the features of an image while retaining features useful for image reconstruction.Additionally,it is worth noting that the existing methods have not fully utilized the rich feature information,leading to information loss,which reduces the ability to learn feature representations.Inspired by self-attention,this paper develops a multiscale feature fusion block(MFFB),which can better utilize the non-local features of an image.MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel dimension,thereby obtaining more comprehensive and rich feature information.As the role of the MFFB is to capture rich global features,this paper further introduces an efficient inverted residual block(EIRB)to supplement the local feature extraction ability of PSMFNet.A comprehensive analysis of the experimental results shows that PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models.展开更多
Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for improving thruster design and designing material processing ...Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for improving thruster design and designing material processing control algorithms. In this study we use the hierarchical clustering analysis algorithm to perform cluster analysis on 17 descriptors related to sputtering. These descriptors are divided into four fundamental groups, with representative descriptors being the mass of the incident ion, the formation energy of the incident ion, the mass of the target and the formation energy of the target. We further discuss the possible physical processes and significance involved in the classification process, including cascade collisions, energy transfer and other processes. Finally, based on the analysis of the above descriptors, several neural network models are constructed for the regression of sputtering threshold E_(th), maximum sputtering energy E_(max) and maximum sputtering yield SY_(max). In the regression model based on 267 samples, the four descriptor attributes showed higher accuracy than the 17 descriptors(R^(2) evaluation) in the same neural network structure, with the 5×5 neural network structure achieving the highest accuracy, having an R^(2) of 0.92. Additionally, simple sputtering test data also demonstrated the generalization ability of the 5×5 neural network model, the error in maximum sputtering yield being less than 5%.展开更多
BACKGROUND Although percutaneous vertebral augmentation(PVA)is a commonly used procedure for treating vertebral compression fracture(VCF),the risk of vertebral refracture should be considered.Chronic kidney disease-mi...BACKGROUND Although percutaneous vertebral augmentation(PVA)is a commonly used procedure for treating vertebral compression fracture(VCF),the risk of vertebral refracture should be considered.Chronic kidney disease-mineral and bone disorder(CKD-MBD)is a systemic disease of mineral and bone metabolism.It is associated with an increased risk of fracture.Few studies have reported the use of PVA in patients with CKD-MBD.We herein report a rare case wherein the cemented vertebra and the adjacent vertebra refractured simultaneously in a CKD-MBD patient after PVA.CASE SUMMARY A 74-year-old man suffered from low back pain after taking a fall about 3 wk ago.According to physical examination,imaging and laboratory findings,diagnoses of T12 VCF,CKD-MBD,and chronic kidney disease stage 5 were established.He then received percutaneous vertebroplasty at T12 vertebra.Fourteen weeks later,he presented with T12 and L1 vertebral refractures caused by lumbar sprain.Once again,he was given PVA which was optimized for the refractured vertebrae.Although the short-term postoperative effect was satisfactory,he reported chronic low back pain again at the 3-month follow-up.CONCLUSION It is necessary that patients with CKD-MBD who have received PVA are aware of the adverse effects of CKD-MBD.It may increase the risk of vertebral refracture.Furthermore,the PVA surgical technique needs to be optimized according to the condition of the patient.The medium-and long-term effects of PVA remain uncertain in patients with CKD-MBD.展开更多
For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining techniq...For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining technique is undoubtedly the most suitable mining method.The downward filling mining technique may eliminate the troubles relating to poor ore deposit conditions,such as production safety,ore loss rate,and depletion rate.However,in this technique,the safety of the artificial roof of the next stratum is of paramount importance.Cementitious tailings backfilling(CTB)that is not sufficiently cemented and causes collapses could threaten ore production.This paper explores a diamond-shaped composite structure to mimic the stability of a glued false roof in an actual infill mine based on the recently emerged three-dimensional(3D)printing technology.Experimental means such as three-point bending and digital image correlation(DIC)techniques were used to explore the flexural characteristics of 3D construction specimens and CTB combinations with different cement/tailings weight ratios at diverse layer heights.The results show that the 3D structure with a 14-mm ply height and CTB has strong flexural characteristics,with a maximum deflection value of 30.1 mm,while the 3D-printed rhomboid polymer(3D-PRP)structure with a 26-mm ply height is slightly worse in terms of flexural strength characteristics,but it has a higher maximum flexural strength of 2.83 MPa.A combination of 3D structure and CTB has more unique mechanical properties than CTB itself.This research work offers practical knowledge on the artificial roof performance of the downward layered filling mining technique and builds a scientific knowledge base regarding the successful application of CTB material in mines.展开更多
Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost,high activity and stability is a challenging issue in electrochemical wate...Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost,high activity and stability is a challenging issue in electrochemical water splitting.Herein,we report the fabrication of heterostructured P-CoMoO_(4)@NiCoP on a Ni foam substrate through interface engineering,by adjusting its composition and architecture.Benefitting from the tailored electronic structure and exposed active sites,the heterostructured P-CoMoO_(4)@NiCoP/NF arrays can be coordinated to boost the overall water splitting.In addition,the superhydrophilic and superaerophobic properties of P-CoMoO_(4)@NiCoP/NF make it conducive to water dissociation and bubble separation in the electrocatalytic process.The heterostructured PCoMoO_(4)@NiCoP/NF exhibits excellent bifunctional electrocatalysis activity with a low overpotential of 66 mV at 10 mA cm^(-2) for HER and 252 mV at 100 mA cm^(-2) for OER.Only 1.62 V potential is required to deliver 20 mA cm^(-2) in a two-electrode electrolysis system,providing a decent overall water splitting performance.The rational construction of the heterostructure makes it possible to regulate the electronic structures and active sites of the electrocatalysts to promote their catalytic activity.展开更多
As an important guarantee for human survival and development,the increasing use of mineral resources has led to the generation of a large amount of tailings and slags.However,with the deep promotion of green concepts ...As an important guarantee for human survival and development,the increasing use of mineral resources has led to the generation of a large amount of tailings and slags.However,with the deep promotion of green concepts such as solid waste resource utilization and sustainable development,adding additives to tailings as filling materials can not only improve resource utilization efficiency and prevent surface collapse,but also reduce solid waste discharge to the surface,which is an effective way to fully utilize tailings resources and achieve land and energy saving,environmental protection,and waste utilization.展开更多
The ordinary cemented tailings backfill(CTB)is a cement-based composite prepared from tailings,cementitious materials,and water.In this study,a series of laboratory tests,including uniaxial compression,digital image c...The ordinary cemented tailings backfill(CTB)is a cement-based composite prepared from tailings,cementitious materials,and water.In this study,a series of laboratory tests,including uniaxial compression,digital image correlation measurement,and scanning electron microscope characteristics of fiber-reinforced CTB(FRCTB),was conducted to obtain the uniaxial compressive strength(UCS),failure evolution,and microstructural characteristics of FRCTB specimens.The results show that adding fibers could increase the UCS values of the CTB by 6.90%to 32.76%.The UCS value of the FRCTB increased with the increase in the polypropylene(PP)fiber content.Moreover,the reinforcement effect of PP fiber on the CTB was better than that of glass fiber.The addition of fiber could increase the peak strain of the FRCTB by0.39%to 1.45%.The peak strain of the FRCTB increased with the increase in glass fiber content.The failure pattern of the FRCTB was coupled with tensile and shear failure.The addition of fiber effectively inhibited the propagation of cracks,and the bridging effect of cracks by the fiber effectively improved the mechanical properties of the FRCTB.The findings in this study can provide a basis for the backfilling design and optimization of mine backfilling methods.展开更多
A series of laboratory investigations are conducted to analyze the effect of flocculant type on the spatial morphology and microstructural characteristics of flocs during the flocculation and settling of tailings.Four...A series of laboratory investigations are conducted to analyze the effect of flocculant type on the spatial morphology and microstructural characteristics of flocs during the flocculation and settling of tailings.Four flocculant types(i.e.,ZYZ,JYC-2,ZYD,and JYC-1)are considered in this study.The fractal characteristics and internal structures of tailings flocs with different flocculant types and settlement heights are analyzed by conducting scanning electron microscopy and X-ray micro-computed tomography scanning experiments based on the fractal theory.Results show that unclassified tailings flocs are irregular clusters with fractal characteristics,and the flocculation effect of the four flocculant types has the following trend:ZYZ>JYC-2>ZYD>JYC-1.The size and average grayscale value of tailings flocs decrease with the increase in settlement height.The average grayscale values at the top and bottom are 144 and 103,respectively.The settlement height remarkably affects the pore distribution pattern,as reflected in the constructed three-dimensional pore model of tailings flocs.The top part of flocs has relatively good penetration,whereas the bottom part of flocs has mostly dispersed pores.The number of pores increases exponentially with the increase in settlement height.By contrast,the size of pores initially increases and subsequently decreases with the increase in settlement height.展开更多
Coronavirus disease 2019(COVID-19)has been a pandemic for more than a year.With the expanding second wave of the pandemic in winter,the continuous evolution of SARS-CoV-2 has brought new issues,including the significa...Coronavirus disease 2019(COVID-19)has been a pandemic for more than a year.With the expanding second wave of the pandemic in winter,the continuous evolution of SARS-CoV-2 has brought new issues,including the significance of virus mutations in infection and the detection of asymptomatic infection.In this review,we first introduced several major SARS-CoV-2 mutations since the COVID-19 outbreak and then mentioned the widely used molecular detection techniques to diagnose COVID-19,primarily focusing on their strengths and limitations.We further discussed the effects of viral genetic variation and asymptomatic infection on the molecular detection of SARS-CoV-2 infection.The review finally summarized useful insights into the molecular diagnosis of COVID-19 under the special situation being challenged by virus mutation and asymptomatic infection.展开更多
Solar distillation is a sustainable and promising technique to generate fresh water.However,the solar vapor generation is a high energy consumption process,resulting in a low water yield under natural sunlight.Hence,d...Solar distillation is a sustainable and promising technique to generate fresh water.However,the solar vapor generation is a high energy consumption process,resulting in a low water yield under natural sunlight.Hence,developing of advanced evaporators that can simultaneously reduce the energy requirement of water vaporization and accelerate solar water evaporation remains a great challenge.In this study,we report the fabrication of a multifunctional hydrogel of H_(x)Mo O_(3)/PNIPAM with PNIPAM as hydratable skeleton and H_(x)Mo O_(3) as the light-absorbing unit for solar water evaporation.The experimental results demonstrate that the as-prepared hydrogel owns excellent photothermal activity.Accurately,the fabricated hydrogel-based solar evaporators achieved high water evaporation rate of 1.65 kg m^(-2)h^(-1)with the energy conversion efficiency of 85.87%under 1 k W m^(-2)irradiation.The enhanced photothermal activity of H_(x)Mo O_(3)/PNIPAM hydrogel can be attributed to the synergistic effects of the components composed in this hierarchical architecture that change the water state and further speed up water evaporation.The H_(x)Mo O_(3)/PNIPAM evaporators indicate its great potential for practical implementation of solar water evaporation.展开更多
Metal nanoparticles(MNPs) possess size-dependent desirable electronic and optical properties while metal-organic frameworks(MOFs) have an edge over extremely large specific surface areas, homogeneous structure, high p...Metal nanoparticles(MNPs) possess size-dependent desirable electronic and optical properties while metal-organic frameworks(MOFs) have an edge over extremely large specific surface areas, homogeneous structure, high porosity and remarkable chemical stability. Their combination(MNPs/MOFs) is a novel nanomaterial with broad application prospect in sensing field. To improve performance in sensing applications, we have paid great attention to synergistic effects between the two compositions above. Because of the synergistic effects between MNPs and MOFs, sensors on the basis of MNPs/MOFs composites show significant sensing enhancement with respect to stability, selectivity and sensitivity. In this review, various applications for MNPs/MOFs composites in electrochemical sensing, fluorescent sensing, colorimetric sensing, surface-enhanced Raman scattering sensing and chemiluminescence/electrochemiluminescence sensing are focused and summarized. Besides, the synergistic interactions between MNPs and MOFs was investigated. Finally, based on theoretical information from the reports as well as experimental experience, this review offers the challenges and opportunities for future research on MNPs/MOFs composites.展开更多
Supramolecular interactions such as t-stacking interaction and charge transfer interaction have drawn much attention in the design and construction of various supramolecular assemblies.Herein,partially oxidized pillar...Supramolecular interactions such as t-stacking interaction and charge transfer interaction have drawn much attention in the design and construction of various supramolecular assemblies.Herein,partially oxidized pillar[5]arene(P5A),pillar[4]arene[1]quinone(P4A1Q),pillar[3]arene[2]quinone(P3A2Q),and pillar[2]arene[3]quinone(P2A3Q)were synthesized by one-step reaction.As indicated by experimental characterization data and density function theory modeling results,charge transfer interaction among partially oxidized P5A plays a significant role in host-host self-assembly behavior and corresponding packing morphology.This work provides a unique strategy for the construction of functional macrocyclic assemblies through host-host self-assembly.展开更多
Different from the grain boundary diffusion process(GBDP),which is suitable for modifying thin magnet,a green-pressing agents permeation process(GAPP)that uses low melting point alloys was applied to the Nd-Fe-B green...Different from the grain boundary diffusion process(GBDP),which is suitable for modifying thin magnet,a green-pressing agents permeation process(GAPP)that uses low melting point alloys was applied to the Nd-Fe-B green compact with a thickness over 15 mm to reconstruct the boundary microstructure of a sintered Nd-Fe-B magnet.The coercivity increases from 12.3 kOe for the sample free of Pr80Al20 to16.8 kOe for the sample with 2 wt%Pr80Al20.By further increasing the Pr80Al20 content to 3 wt%,the coercivity increases slightly,but the remanence and Hk/Hcj deteriorate obviously.The optimal comprehensive properties of Hcj=16.8 kOe,Br=13.4 kG and Hk/Hcj=0.975 are obtained at 2 wt%Pr80Al20,since matrix phase grains are separated by relatively continuous thin grain boundary layers,which weaken the magnetic coupling between adjacent grains.The coercivities of the samples from the GAPP that use2 wt%Pr80Al20,Pr70Al30 and Pr60Tb20Al20 alloys,respectively,can be enhanced to a large extent.However,the coercivity of the magnet reconstructed with Pr80Al20 is lower than that of the sample with Pr60Tb20Al20 but is higher than that of the sample reconstructed with Pr70Cu30 alloy.Moreover,the coercivity of the sample from the GAPP using 2 wt%Pr80Al20 is much higher than that of the sample from the GBDP,which is due to a nearly uniform boundary microstructure from the surface to the interior of the thick magnet from the GAPP,thus providing new insights into the fabrication of thick and bulky permanent magnets with high coercivity.展开更多
Insects employ various types of gustatory receptors(GRs)to identify nutrient-rich food and avoid toxic substances.The larval gustatory system is the critical checkpoint for food acceptance or rejection.As a specialist...Insects employ various types of gustatory receptors(GRs)to identify nutrient-rich food and avoid toxic substances.The larval gustatory system is the critical checkpoint for food acceptance or rejection.As a specialist herbivore,the larvae of Bactrocera minax feed only on unripe citrus fruits.However,how larvae use GRs to check and adapt to the secondary metabolites in unripe citrus fruits remains unknown.In this study,we first performed developmental expression profiles showing that most BminGRs genes were highly expressed in 1st and 2nd instar larvae and that tissue-specific expression indicated high expression of most BminGRs genes in the mouthparts of 2nd instar larvae.Furthermore,we found that silencing BminGR59f by RNA interference(RNAi)affected the growth of 2nd instar B.minax larvae.Hesperidin and naringin were screened as ligands of BminGR59f via RNAi and cell calcium imaging,and the combination of these two flavones increased the body weight of larvae.In summary,we identified a novel gustatory perception pattern in B.minax for detecting hesperidin and naringin,which boosted the growth of B.minax larvae.These results shed light on how specialist herbivores detect and adapt to host metbolites in adverse environments depending on larval GRs.展开更多
Pillararene/calixarene-based functional materials have garnered significant attention for their unique topological/chemical structures and physicochemical properties,and their extended applications in electro-chemistr...Pillararene/calixarene-based functional materials have garnered significant attention for their unique topological/chemical structures and physicochemical properties,and their extended applications in electro-chemistry have given rise to a promising area of research.This review details current advance in developing electrochemical energy materials based on pillararene/calixarene systems from the viewpoint of both fundamental theoretical simulations and research on practical applications.First,we discuss the underlying mechanisms of applying pillararene/calixarene-based systems for electrochemical energy applications.Second,we summarize simulation studies on pillarquinone and calixquinone with intrinsic structures for applications in batteries.In addition,state-of-the-art applications of pillararene/calixarene-based systems in electrochemical energy storage devices such as lithium/sodium-ion batteries and supercapacitors are highlighted.The diverse roles they play and the various design strategies that have been investigated for high-performance pillararene/calixarene-based batteries are analyzed.Finally,we discuss the prospects for further developments in this emerging field.This review not only describes recent advances in pillararene/calixarene-based batteries and supercapacitors but also lays a firm groundwork for their further application in electrochemical energy engineering.展开更多
With the shifting role of placebos,there is a need to develop animal models of placebo analgesia and elucidate the mechanisms underlying the effect.In the present study,male Sprague-Dawley rats with chronic inflammato...With the shifting role of placebos,there is a need to develop animal models of placebo analgesia and elucidate the mechanisms underlying the effect.In the present study,male Sprague-Dawley rats with chronic inflammatory pain caused by complete Freund’s adjuvant(CFA)underwent a series of conditioning procedures,in which morphine was associated with different cues,but they failed to induce placebo analgesia.Then,conditioning with the conditioned place preference apparatus successfully induced analgesic expectancy and placebo analgesia in naive rats but only induced analgesic expectancy and no analgesic effect in CFA rats.Subsequently,we found enhanced c-fos expression in the nucleus accumbens and reduced expression in the anterior cingulate cortex in naive rats while c-fos expression in the anterior cingulate cortex in CFA rats was not altered.In summary,the behavioral conditioning model demonstrated the difficulty of establishing a placebo analgesia model in rats with a pathological condition.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134)。
文摘Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.
基金financially supported by the China’s National Key Research and Development Program(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134).
文摘Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations.
基金funded by Ningbo Key R&D Plan and“Unveiling and Leading”(Grant No.2023Z093)Ningbo Science and Technology Innovation 2025 Major Special Project(Grant No.2022Z106)Hezhou City Central Leading Local Science and Technology Development Special Fund Project(Grant No.HK ZY2022002).
文摘The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.
基金Guangdong Science and Technology Program under Grant No.202206010052Foshan Province R&D Key Project under Grant No.2020001006827Guangdong Academy of Sciences Integrated Industry Technology Innovation Center Action Special Project under Grant No.2022GDASZH-2022010108.
文摘The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder their applicability to edge devices,despite their satisfactory reconstruction performance.These methods commonly use standard convolutions,which increase the convolutional operation cost of the model.In this paper,a lightweight Partial Separation and Multiscale Fusion Network(PSMFNet)is proposed to alleviate this problem.Specifically,this paper introduces partial convolution(PConv),which reduces the redundant convolution operations throughout the model by separating some of the features of an image while retaining features useful for image reconstruction.Additionally,it is worth noting that the existing methods have not fully utilized the rich feature information,leading to information loss,which reduces the ability to learn feature representations.Inspired by self-attention,this paper develops a multiscale feature fusion block(MFFB),which can better utilize the non-local features of an image.MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel dimension,thereby obtaining more comprehensive and rich feature information.As the role of the MFFB is to capture rich global features,this paper further introduces an efficient inverted residual block(EIRB)to supplement the local feature extraction ability of PSMFNet.A comprehensive analysis of the experimental results shows that PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models.
基金supported by the National Key Research and Development Program of China (No. 2020YFC2201101)the Shenzhen Key Laboratory of Intelligent Microsatellite Constellation (No. ZDSYS20210623091808026)Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110500)。
文摘Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for improving thruster design and designing material processing control algorithms. In this study we use the hierarchical clustering analysis algorithm to perform cluster analysis on 17 descriptors related to sputtering. These descriptors are divided into four fundamental groups, with representative descriptors being the mass of the incident ion, the formation energy of the incident ion, the mass of the target and the formation energy of the target. We further discuss the possible physical processes and significance involved in the classification process, including cascade collisions, energy transfer and other processes. Finally, based on the analysis of the above descriptors, several neural network models are constructed for the regression of sputtering threshold E_(th), maximum sputtering energy E_(max) and maximum sputtering yield SY_(max). In the regression model based on 267 samples, the four descriptor attributes showed higher accuracy than the 17 descriptors(R^(2) evaluation) in the same neural network structure, with the 5×5 neural network structure achieving the highest accuracy, having an R^(2) of 0.92. Additionally, simple sputtering test data also demonstrated the generalization ability of the 5×5 neural network model, the error in maximum sputtering yield being less than 5%.
文摘BACKGROUND Although percutaneous vertebral augmentation(PVA)is a commonly used procedure for treating vertebral compression fracture(VCF),the risk of vertebral refracture should be considered.Chronic kidney disease-mineral and bone disorder(CKD-MBD)is a systemic disease of mineral and bone metabolism.It is associated with an increased risk of fracture.Few studies have reported the use of PVA in patients with CKD-MBD.We herein report a rare case wherein the cemented vertebra and the adjacent vertebra refractured simultaneously in a CKD-MBD patient after PVA.CASE SUMMARY A 74-year-old man suffered from low back pain after taking a fall about 3 wk ago.According to physical examination,imaging and laboratory findings,diagnoses of T12 VCF,CKD-MBD,and chronic kidney disease stage 5 were established.He then received percutaneous vertebroplasty at T12 vertebra.Fourteen weeks later,he presented with T12 and L1 vertebral refractures caused by lumbar sprain.Once again,he was given PVA which was optimized for the refractured vertebrae.Although the short-term postoperative effect was satisfactory,he reported chronic low back pain again at the 3-month follow-up.CONCLUSION It is necessary that patients with CKD-MBD who have received PVA are aware of the adverse effects of CKD-MBD.It may increase the risk of vertebral refracture.Furthermore,the PVA surgical technique needs to be optimized according to the condition of the patient.The medium-and long-term effects of PVA remain uncertain in patients with CKD-MBD.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the National Natural Science Foundation of China(No.51804017)。
文摘For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining technique is undoubtedly the most suitable mining method.The downward filling mining technique may eliminate the troubles relating to poor ore deposit conditions,such as production safety,ore loss rate,and depletion rate.However,in this technique,the safety of the artificial roof of the next stratum is of paramount importance.Cementitious tailings backfilling(CTB)that is not sufficiently cemented and causes collapses could threaten ore production.This paper explores a diamond-shaped composite structure to mimic the stability of a glued false roof in an actual infill mine based on the recently emerged three-dimensional(3D)printing technology.Experimental means such as three-point bending and digital image correlation(DIC)techniques were used to explore the flexural characteristics of 3D construction specimens and CTB combinations with different cement/tailings weight ratios at diverse layer heights.The results show that the 3D structure with a 14-mm ply height and CTB has strong flexural characteristics,with a maximum deflection value of 30.1 mm,while the 3D-printed rhomboid polymer(3D-PRP)structure with a 26-mm ply height is slightly worse in terms of flexural strength characteristics,but it has a higher maximum flexural strength of 2.83 MPa.A combination of 3D structure and CTB has more unique mechanical properties than CTB itself.This research work offers practical knowledge on the artificial roof performance of the downward layered filling mining technique and builds a scientific knowledge base regarding the successful application of CTB material in mines.
基金The authors acknowledge the National Natural Science Foundation of China(NSFC 91834301,21808046 and 21908037)Anhui Provincial Science and Technology Department Foundation(201903a05020021 and 202003a05020046)for funding support.
文摘Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost,high activity and stability is a challenging issue in electrochemical water splitting.Herein,we report the fabrication of heterostructured P-CoMoO_(4)@NiCoP on a Ni foam substrate through interface engineering,by adjusting its composition and architecture.Benefitting from the tailored electronic structure and exposed active sites,the heterostructured P-CoMoO_(4)@NiCoP/NF arrays can be coordinated to boost the overall water splitting.In addition,the superhydrophilic and superaerophobic properties of P-CoMoO_(4)@NiCoP/NF make it conducive to water dissociation and bubble separation in the electrocatalytic process.The heterostructured PCoMoO_(4)@NiCoP/NF exhibits excellent bifunctional electrocatalysis activity with a low overpotential of 66 mV at 10 mA cm^(-2) for HER and 252 mV at 100 mA cm^(-2) for OER.Only 1.62 V potential is required to deliver 20 mA cm^(-2) in a two-electrode electrolysis system,providing a decent overall water splitting performance.The rational construction of the heterostructure makes it possible to regulate the electronic structures and active sites of the electrocatalysts to promote their catalytic activity.
文摘As an important guarantee for human survival and development,the increasing use of mineral resources has led to the generation of a large amount of tailings and slags.However,with the deep promotion of green concepts such as solid waste resource utilization and sustainable development,adding additives to tailings as filling materials can not only improve resource utilization efficiency and prevent surface collapse,but also reduce solid waste discharge to the surface,which is an effective way to fully utilize tailings resources and achieve land and energy saving,environmental protection,and waste utilization.
基金financially supported by the National Natural Science Foundation of China(No.51804017)the Fundamental Research Funds for Central Universities,China(No.FRF-TP-20-001A2)the State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.SYSJJ2021-04)。
文摘The ordinary cemented tailings backfill(CTB)is a cement-based composite prepared from tailings,cementitious materials,and water.In this study,a series of laboratory tests,including uniaxial compression,digital image correlation measurement,and scanning electron microscope characteristics of fiber-reinforced CTB(FRCTB),was conducted to obtain the uniaxial compressive strength(UCS),failure evolution,and microstructural characteristics of FRCTB specimens.The results show that adding fibers could increase the UCS values of the CTB by 6.90%to 32.76%.The UCS value of the FRCTB increased with the increase in the polypropylene(PP)fiber content.Moreover,the reinforcement effect of PP fiber on the CTB was better than that of glass fiber.The addition of fiber could increase the peak strain of the FRCTB by0.39%to 1.45%.The peak strain of the FRCTB increased with the increase in glass fiber content.The failure pattern of the FRCTB was coupled with tensile and shear failure.The addition of fiber effectively inhibited the propagation of cracks,and the bridging effect of cracks by the fiber effectively improved the mechanical properties of the FRCTB.The findings in this study can provide a basis for the backfilling design and optimization of mine backfilling methods.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51974012 and 51804017)the National Key Research and Development Program of China(No.2018YFC0604602)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.FRF-BD-19-005A)the Opening Fund of State Key Laboratory of Nonlinear Mechanics(No.LNM202009).
文摘A series of laboratory investigations are conducted to analyze the effect of flocculant type on the spatial morphology and microstructural characteristics of flocs during the flocculation and settling of tailings.Four flocculant types(i.e.,ZYZ,JYC-2,ZYD,and JYC-1)are considered in this study.The fractal characteristics and internal structures of tailings flocs with different flocculant types and settlement heights are analyzed by conducting scanning electron microscopy and X-ray micro-computed tomography scanning experiments based on the fractal theory.Results show that unclassified tailings flocs are irregular clusters with fractal characteristics,and the flocculation effect of the four flocculant types has the following trend:ZYZ>JYC-2>ZYD>JYC-1.The size and average grayscale value of tailings flocs decrease with the increase in settlement height.The average grayscale values at the top and bottom are 144 and 103,respectively.The settlement height remarkably affects the pore distribution pattern,as reflected in the constructed three-dimensional pore model of tailings flocs.The top part of flocs has relatively good penetration,whereas the bottom part of flocs has mostly dispersed pores.The number of pores increases exponentially with the increase in settlement height.By contrast,the size of pores initially increases and subsequently decreases with the increase in settlement height.
基金supported by the National Natural Science Foundation of China(project No.81970029)Fundamental Research Funds for the Central Universities of China(The Emergency Projects on COVID-19,xzy032020042)Qinnong Bank-XJTU special project for COVID-19(qnxjtu-12)。
文摘Coronavirus disease 2019(COVID-19)has been a pandemic for more than a year.With the expanding second wave of the pandemic in winter,the continuous evolution of SARS-CoV-2 has brought new issues,including the significance of virus mutations in infection and the detection of asymptomatic infection.In this review,we first introduced several major SARS-CoV-2 mutations since the COVID-19 outbreak and then mentioned the widely used molecular detection techniques to diagnose COVID-19,primarily focusing on their strengths and limitations.We further discussed the effects of viral genetic variation and asymptomatic infection on the molecular detection of SARS-CoV-2 infection.The review finally summarized useful insights into the molecular diagnosis of COVID-19 under the special situation being challenged by virus mutation and asymptomatic infection.
基金financially supported by National Natural Science Foundation of China (No. 21773216, 51173170, 21903070)the Science and Technology Program (182102410073) of Henan Provincethe Key Program of Science and Technology (121PZDGG213) from Zhengzhou Bureau of science and technology。
文摘Solar distillation is a sustainable and promising technique to generate fresh water.However,the solar vapor generation is a high energy consumption process,resulting in a low water yield under natural sunlight.Hence,developing of advanced evaporators that can simultaneously reduce the energy requirement of water vaporization and accelerate solar water evaporation remains a great challenge.In this study,we report the fabrication of a multifunctional hydrogel of H_(x)Mo O_(3)/PNIPAM with PNIPAM as hydratable skeleton and H_(x)Mo O_(3) as the light-absorbing unit for solar water evaporation.The experimental results demonstrate that the as-prepared hydrogel owns excellent photothermal activity.Accurately,the fabricated hydrogel-based solar evaporators achieved high water evaporation rate of 1.65 kg m^(-2)h^(-1)with the energy conversion efficiency of 85.87%under 1 k W m^(-2)irradiation.The enhanced photothermal activity of H_(x)Mo O_(3)/PNIPAM hydrogel can be attributed to the synergistic effects of the components composed in this hierarchical architecture that change the water state and further speed up water evaporation.The H_(x)Mo O_(3)/PNIPAM evaporators indicate its great potential for practical implementation of solar water evaporation.
基金supported by the National Natural Science Foundation of China (No. NSFC-U1904215)Natural Science Foundation of Jiangsu Province (No. BK20200044)+1 种基金Program for Young Changjiang Scholars of the Ministry of EducationChina (No.Q2018270)。
文摘Metal nanoparticles(MNPs) possess size-dependent desirable electronic and optical properties while metal-organic frameworks(MOFs) have an edge over extremely large specific surface areas, homogeneous structure, high porosity and remarkable chemical stability. Their combination(MNPs/MOFs) is a novel nanomaterial with broad application prospect in sensing field. To improve performance in sensing applications, we have paid great attention to synergistic effects between the two compositions above. Because of the synergistic effects between MNPs and MOFs, sensors on the basis of MNPs/MOFs composites show significant sensing enhancement with respect to stability, selectivity and sensitivity. In this review, various applications for MNPs/MOFs composites in electrochemical sensing, fluorescent sensing, colorimetric sensing, surface-enhanced Raman scattering sensing and chemiluminescence/electrochemiluminescence sensing are focused and summarized. Besides, the synergistic interactions between MNPs and MOFs was investigated. Finally, based on theoretical information from the reports as well as experimental experience, this review offers the challenges and opportunities for future research on MNPs/MOFs composites.
基金support from the“Young Talent Support Plan”(No.050700-71240000000046)of Xi'an Jiaotong University and Natural Science Foundation of Shaanxi Province(No.2021JM-006)J.Han acknowledges the 111 Project(No.B12015).
文摘Supramolecular interactions such as t-stacking interaction and charge transfer interaction have drawn much attention in the design and construction of various supramolecular assemblies.Herein,partially oxidized pillar[5]arene(P5A),pillar[4]arene[1]quinone(P4A1Q),pillar[3]arene[2]quinone(P3A2Q),and pillar[2]arene[3]quinone(P2A3Q)were synthesized by one-step reaction.As indicated by experimental characterization data and density function theory modeling results,charge transfer interaction among partially oxidized P5A plays a significant role in host-host self-assembly behavior and corresponding packing morphology.This work provides a unique strategy for the construction of functional macrocyclic assemblies through host-host self-assembly.
基金Project supported by the National Natural Science Foundation of China(51401021)the State Key Laboratory Advanced Metals and Materials(20162-14).
文摘Different from the grain boundary diffusion process(GBDP),which is suitable for modifying thin magnet,a green-pressing agents permeation process(GAPP)that uses low melting point alloys was applied to the Nd-Fe-B green compact with a thickness over 15 mm to reconstruct the boundary microstructure of a sintered Nd-Fe-B magnet.The coercivity increases from 12.3 kOe for the sample free of Pr80Al20 to16.8 kOe for the sample with 2 wt%Pr80Al20.By further increasing the Pr80Al20 content to 3 wt%,the coercivity increases slightly,but the remanence and Hk/Hcj deteriorate obviously.The optimal comprehensive properties of Hcj=16.8 kOe,Br=13.4 kG and Hk/Hcj=0.975 are obtained at 2 wt%Pr80Al20,since matrix phase grains are separated by relatively continuous thin grain boundary layers,which weaken the magnetic coupling between adjacent grains.The coercivities of the samples from the GAPP that use2 wt%Pr80Al20,Pr70Al30 and Pr60Tb20Al20 alloys,respectively,can be enhanced to a large extent.However,the coercivity of the magnet reconstructed with Pr80Al20 is lower than that of the sample with Pr60Tb20Al20 but is higher than that of the sample reconstructed with Pr70Cu30 alloy.Moreover,the coercivity of the sample from the GAPP using 2 wt%Pr80Al20 is much higher than that of the sample from the GBDP,which is due to a nearly uniform boundary microstructure from the surface to the interior of the thick magnet from the GAPP,thus providing new insights into the fabrication of thick and bulky permanent magnets with high coercivity.
基金This study was funded by National Natural Science Foundation of China(31972270,31661143045)agricultural public welfare industry research from Ministry of Agriculture of People's Republic of China(201503137)+1 种基金the Joint Program of the Israel Science Foundation and the Science Foundation of China(2482/16)the fundamental research funds for the central universities(2662020ZKPY018).
文摘Insects employ various types of gustatory receptors(GRs)to identify nutrient-rich food and avoid toxic substances.The larval gustatory system is the critical checkpoint for food acceptance or rejection.As a specialist herbivore,the larvae of Bactrocera minax feed only on unripe citrus fruits.However,how larvae use GRs to check and adapt to the secondary metabolites in unripe citrus fruits remains unknown.In this study,we first performed developmental expression profiles showing that most BminGRs genes were highly expressed in 1st and 2nd instar larvae and that tissue-specific expression indicated high expression of most BminGRs genes in the mouthparts of 2nd instar larvae.Furthermore,we found that silencing BminGR59f by RNA interference(RNAi)affected the growth of 2nd instar B.minax larvae.Hesperidin and naringin were screened as ligands of BminGR59f via RNAi and cell calcium imaging,and the combination of these two flavones increased the body weight of larvae.In summary,we identified a novel gustatory perception pattern in B.minax for detecting hesperidin and naringin,which boosted the growth of B.minax larvae.These results shed light on how specialist herbivores detect and adapt to host metbolites in adverse environments depending on larval GRs.
基金The authors acknowledge the financial support from the Young Talent Support Plan(No.010600-11301291010702,010600-71211201010715 and 050700-71240000000046)of Xi’an Jiaotong Universitythe Natural Science Foundation of Shaanxi Province(No.2021JM-006)+3 种基金the National Natural Science Foundation of China(No.62074123 and 61701543)the PetroChina Innovation Foundation(No.2019D-5007-0410)This research is also supported by the Singapore National Research Foundation Investigator Ship(No.NRF-NRFI2018-03)the Singapore Academic Research Fund(No.TR12/19).
文摘Pillararene/calixarene-based functional materials have garnered significant attention for their unique topological/chemical structures and physicochemical properties,and their extended applications in electro-chemistry have given rise to a promising area of research.This review details current advance in developing electrochemical energy materials based on pillararene/calixarene systems from the viewpoint of both fundamental theoretical simulations and research on practical applications.First,we discuss the underlying mechanisms of applying pillararene/calixarene-based systems for electrochemical energy applications.Second,we summarize simulation studies on pillarquinone and calixquinone with intrinsic structures for applications in batteries.In addition,state-of-the-art applications of pillararene/calixarene-based systems in electrochemical energy storage devices such as lithium/sodium-ion batteries and supercapacitors are highlighted.The diverse roles they play and the various design strategies that have been investigated for high-performance pillararene/calixarene-based batteries are analyzed.Finally,we discuss the prospects for further developments in this emerging field.This review not only describes recent advances in pillararene/calixarene-based batteries and supercapacitors but also lays a firm groundwork for their further application in electrochemical energy engineering.
基金supported by grants from the National Natural Science Foundation of China(31720103908,31530028,and 81821092)the National Basic Research Development Program of the Ministry of Science and Technology of China(2017YFA0701300).
文摘With the shifting role of placebos,there is a need to develop animal models of placebo analgesia and elucidate the mechanisms underlying the effect.In the present study,male Sprague-Dawley rats with chronic inflammatory pain caused by complete Freund’s adjuvant(CFA)underwent a series of conditioning procedures,in which morphine was associated with different cues,but they failed to induce placebo analgesia.Then,conditioning with the conditioned place preference apparatus successfully induced analgesic expectancy and placebo analgesia in naive rats but only induced analgesic expectancy and no analgesic effect in CFA rats.Subsequently,we found enhanced c-fos expression in the nucleus accumbens and reduced expression in the anterior cingulate cortex in naive rats while c-fos expression in the anterior cingulate cortex in CFA rats was not altered.In summary,the behavioral conditioning model demonstrated the difficulty of establishing a placebo analgesia model in rats with a pathological condition.