As a ligand-dependent transcription factor,retinoid-associated orphan receptor gt(RORγt)that controls T helper(Th)17 cell differentiation and interleukin(IL)-17 expression plays a critical role in the progression of ...As a ligand-dependent transcription factor,retinoid-associated orphan receptor gt(RORγt)that controls T helper(Th)17 cell differentiation and interleukin(IL)-17 expression plays a critical role in the progression of several inflammatory and autoimmune conditions.An emerging novel approach to the therapy of these diseases thus involves controlling the transcriptional capacity of RORγt to decrease Th17 cell development and IL-17 production.Several RORγt inhibitors including both antagonists and inverse agonists have been discovered to regulate the transcriptional activity of RORγt by binding to orthosteric-or allosteric-binding sites in the ligand-binding domain.Some of small-molecule inhibitors have entered clinical evaluations.Therefore,in current review,the role of RORγt in Th17 regulation and Th17-related inflammatory and autoimmune diseases was highlighted.Notably,the recently developed RORγt inhibitors were summarized,with an emphasis on their optimization from lead compounds,efficacy,toxicity,mechanisms of action,and clinical trials.The limitations of current development in this area were also discussed to facilitate future research.展开更多
Tunnels in fractured rock masses are typically damaged by dynamic disturbances from various directions.To investigate the influence of blasting load directions on the stability of a tunnel with a precrack nearby,blast...Tunnels in fractured rock masses are typically damaged by dynamic disturbances from various directions.To investigate the influence of blasting load directions on the stability of a tunnel with a precrack nearby,blasting tests were conducted on the physical models of an external crack around a tunnel(ECT)in this study.Failure modes of the tunnels were analysed based on stress wave theory.The Riedel-Hiermaier-Thoma(RHT)material model was employed to perform the numerical simulations on ECT models.Stress distribution around the tunnels and final failure patterns of the tunnels were characterised.The results show that,under blasting loads,the pre-crack propagates and then new cracks initiates on the incident side of the tunnel.These cracks extend towards each other and eventually coalesce.Blasting load directions significantly influence the ultimate failure mode of the tunnel in the fractured rock masses.The new cracks on the shadow side of the tunnel appear at different positions when the blasting stress waves come from various directions.The results are meaningful to the analysis of tunnel stability and optimisation of the tunnel support scheme.展开更多
Albumin has been widely applied for rational design of drug delivery complexes as natural carriers in cancer therapy due to its distinct advantages of biocompatibility,abundance,low toxicity and versatile property.Hen...Albumin has been widely applied for rational design of drug delivery complexes as natural carriers in cancer therapy due to its distinct advantages of biocompatibility,abundance,low toxicity and versatile property.Hence,various types of multifunctional albumin-based nanoplatforms(MAlb-NPs)that adopt multiple imaging and therapeutic techniques have been developed for cancer diagnosis and treatment.Stimuli-responsive release,including reduction-sensitive,p H-responsive,concentration-dependent and photodynamic-triggered,is important to achieve low-toxicity cancer therapy.Several types of imaging techniques can synergistically improve the effectiveness of cancer therapy.Therefore,combinational theranostic is considered to be a prospective strategy to improve treatment efficiency,minimize side effects and reduce drug resistance,which has received tremendous attentions in recent years.In this review,we highlight several stimuli-responsive albumin nanoplatforms for combinational theranostic.展开更多
This paper analyzed the applicable conditions of the Green-Wave traffic theory, used two-phase signal control concept to optimize the Green-Wave traffic theory, put forward specific program for cross intersections and...This paper analyzed the applicable conditions of the Green-Wave traffic theory, used two-phase signal control concept to optimize the Green-Wave traffic theory, put forward specific program for cross intersections and T-intersections. The analysis concluded that the optimized Green-Wave traffic theory is favorable to improve road safety and reduce vehicle fuel consumption and reduce vehicle emissions and other aspects.展开更多
Photonic crystal(PC)patterns with tunable and changeable nonvolatile structural colors printed from a single ink are of great interest for optical products but have rarely been reported because most inks can only outp...Photonic crystal(PC)patterns with tunable and changeable nonvolatile structural colors printed from a single ink are of great interest for optical products but have rarely been reported because most inks can only output one respective structural color.Herein,we propose a facile yet effective kinetically controlled self-assembly strategy to address this challenge.An ink formulation containing supramolecular block copolymers(SBCPs)is developed.SBCP patterns were printed by direct-ink-writing followed by solvent annealing to generate different structural colors by simply controlling the annealing time.The self-assembly kinetic regime suggests that different colors result from various kinetically trapped metastable states.In turn,the variation in structural color enables“visualization”of the self-assembly dynamics.Furthermore,we demonstrate that these kinetically trapped structures exhibit different responsive color-change behaviors.In addition,this kinetic control strategy can be synergistic with thermodynamic control to extend the color range.This study provides a facile yet effective solution for well-designed PC patterns with tunable,responsive,and unfading colors printed from the simplest single-nozzle printer with a single colorless ink,presenting great potential in broad applications,including information storage,encryption,and anti-fake.展开更多
Dephosphorisation basic oxygen furnaces (deP-BOFs) greatly differ from conventional BOFs in the melting process, especially its many limits on adding scrap. A mathematical model of the steel scrap melting process was ...Dephosphorisation basic oxygen furnaces (deP-BOFs) greatly differ from conventional BOFs in the melting process, especially its many limits on adding scrap. A mathematical model of the steel scrap melting process was established in MATLAB to investigate the mechanism of scrap melting in deP-BOF in terms of coupling effects of the carbon content of the molten steel, temperature, scrap preheating and converter blowing time on the melting rate and size of the steel scraps. The scrap melting rate was influenced by both the heat and mass transfer during the melting process: at 1350℃, when the carbon content was increased from 4.5 to 5.0 mass%, the scrap melting rate increased by 43%;for the carbon content of 4.5 mass%, when the temperature was increased from 1350 to 1400℃, the scrap melting rate increased by 60%. The carbonisation was found to be the restrictive step of the scrap melting process in deP-BOFs with respect to conventional ones. The scrap heating from room temperature to 800℃ reduced the crusting thickness on the scrap surface but there was no obvious influence on the melting rate. The scrap melting size in the deP-BOF was rather limited by its low melting rate and short melting time.展开更多
The models for calculating the heat transfer in converters allow the accurate control of heat dissipation caused by downtime,and thus help in crease scrap ratio and reduce energy consumptio n.ANSYS 17 was used to esta...The models for calculating the heat transfer in converters allow the accurate control of heat dissipation caused by downtime,and thus help in crease scrap ratio and reduce energy consumptio n.ANSYS 17 was used to establish such a model to analyse the coupling law between the downtime and heat dissipation of the converter and the temperature drop of molten iron.Temperature was measured by infrared detection,and model accuracy was verified by comparative analysis.The variation law of the amount of cold charge added for different downtimes under different process conditions was studied.The results show that the range of the variation of heat dissipation caused by downtime is 8.9-78.5 GJ.If the downtime increases by 30 min,heat dissipation of dephosphorisation(deP)and decarburisation(deC)converters increases by about 23.4 and 41.3 GJ,respectively.In a certain smelting cycle,the temperature drop of the molten iron for deP,deC and conventional converters increases by about 12.5,15.0 and 17.0 K,respectively;and the amount of scrap added in the double-linking and conventional smelting processes decreases by 0.93 and 0.75%,respectively.展开更多
The Unsteady Vortex Lattice Method(UVLM) is a medium-fidelity aerodynamic tool that has been widely used in aeroelasticity and flight dynamics simulations. The most timeconsuming step is the evaluation of the induced ...The Unsteady Vortex Lattice Method(UVLM) is a medium-fidelity aerodynamic tool that has been widely used in aeroelasticity and flight dynamics simulations. The most timeconsuming step is the evaluation of the induced velocity. Supposing that the number of bound and wake lattices is N and the computational cost is O (N2), we present an OeNT Dipole Panel Fast Multipole Method(DPFMM) for the rapid evaluation of the induced velocity in UVLM. The multipole expansion coefficients of a quadrilateral dipole panel have been derived in spherical coordinates, whose accuracy is the same as that of the Biot-Savart kernel at the same truncation degree P.Two methods(the loosening method and the shrinking method) are proposed and tested for space partitioning volumetric panels. Compared with FMM for vortex filaments(with three harmonics),DPFMM is approximately two times faster for N2 [103,106]. The simulation time of a multirotor(N~104) is reduced from 100 min(with unaccelerated direct solver) to 2 min(with DPFMM).展开更多
Atmospheric particulate matter pollution has attracted much wider attention globally.In recent years,the development of atmospheric particle collection techniques has put forwards new demands on the real-time source a...Atmospheric particulate matter pollution has attracted much wider attention globally.In recent years,the development of atmospheric particle collection techniques has put forwards new demands on the real-time source apportionments techniques.Such demands are summarized,in this paper,as how to set up new restraints in apportionment and how to develop a non-linear regression model to process complicated circumstances,such as the existence of secondary source and similar source.In this study,we firstly analyze the possible and potential restraints in single particle source apportionment,then propose a novel three-step self-feedback long short-term memory(SF-LSTM)network for approximating the source contribution.The proposed deep learning neural network includes three modules,as generation,scoring and refining,and regeneration modules.Benefited from the scoring modules,SF-LSTM implants four loss functions representing four restraints to be followed in the apportionment,meanwhile,the regeneration module calculates the source contribution in a non-linear way.The results show that the model outperforms the conventional regression methods in the overall performance of the four evaluation indicators(residual sum of squares,stability,sparsity,negativity)for the restraints.Additionally,in short time-resolution analyzing,SF-LSTM provides better results under the restraint of stability.展开更多
Converting thermal energy into mechanical work by means of Organic Rankine Cycle is a validated technology to exploit low-grade waste heat.The typical design process of Organic Rankine Cycle system,which commonly in-v...Converting thermal energy into mechanical work by means of Organic Rankine Cycle is a validated technology to exploit low-grade waste heat.The typical design process of Organic Rankine Cycle system,which commonly in-volves working fluid selection,cycle configuration selection,operating parameters optimization,and component selection and sizing,is time-consuming and highly dependent on engineer’s experience.Thus,it is difficult to achieve the optimal design in most cases.In recent decades,artificial intelligence has been gradually introduced into the design of energy system to overcome above shortcomings.In order to clarify the research field of arti-ficial intelligence technique in Organic Rankine Cycle design and guide artificial intelligence technique to assist Organic Rankine Cycle design better,this study presents a preliminary literature summary on recent progresses of artificial intelligence technique in organic Rankine cycle systems design.First,this study analyzes four main procedures which constitute a typical design process of Organic Rankine Cycle systems and finds that design problems encountered during design process can be divided into three categories:decision making,parameter optimization and parameter prediction.In the second section,a detailed literature review on each design proce-dures using artificial intelligence algorithms is presented.At last,the state of art in this field and the prospects for the future work are provided.展开更多
A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route.More speci...A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route.More specifically,polystyrene-b-poly(4-vinyl pyridine)(PS-b-P4VP)particles with sphere-within-sphere structure(SS particles)are prepared by three-dimensional(3D)soft-confined assembly through emulsion-solvent evaporation,followed by 3D soft-confined solvent annealing upon the SS particles in aqueous dispersions for structural engineering.A water-miscible solvent(e.g.,THF)is employed for annealing,which results in dramatic transitions of the assemblies,e.g.,from SS particles to polymersomes.This approach works for PS-b-P4VP in a wide range of block ratios.Moreover,this method enables effective encapsulation/loading of cargoes such as fluorescent dyes and metal nanoparticles,which offers a new route to prepare polymersomes that could be applied for cargo release,diagnostic imaging,and nanoreactor,etc.展开更多
Contact-killing antimicrobial coatings based on host defense peptides(HDPs) and their synthetic mimics have shown potential as powerful tools to combat implant-associated infections. Covalent modification of the antim...Contact-killing antimicrobial coatings based on host defense peptides(HDPs) and their synthetic mimics have shown potential as powerful tools to combat implant-associated infections. Covalent modification of the antimicrobial surface has been utilized to prevent early-stage microbial infections owing to the less drug-leaching possibility that is beneficial to human health and the natural environment. Although considerable progress has been achieved in preparing contact-killing antimicrobial surfaces, discussions focusing on the in vitro and in vivo evaluations of these surfaces are limited. In this review, we summarized the established in vitro methods to simulate the practical interaction of microbes with the surrounding biological environment and the reported in vivo studies at different implant sites. We suggested that the in vivo specific site infection model is essential to gain a comprehensive understanding of these antimicrobial coatings in the preclinical stage, which can be established based on investigations performed using various in vitro assays and conventional non-specific site infection models. Overall, these precedent studies focusing on bacterial contact-killing coatings modified with HDPs and HDP mimics can be considered as critical to assess the surface antibacterial ability and to guide the future developments and applications of antimicrobial surfaces.展开更多
基金supported by the grants from the Sichuan Science and Technology Program,China(Grant Nos.:2023NSFSC0614 and 2022YFS0624)Southwest Medical University Science and Technology Program,China(Grant No.:2021ZKZD017)+2 种基金the Luzhou Science and Technology Program,China(Grant Nos.:2022-YJY-127,2022YFS0624-B1,2022YFS0624-C1,and 2022YFS0624-B3)the Open Research Project Program funded by the Science and Technology Development Fund(Grant No.:SKL-QRCM(UM)-2020-2022)the State Key Laboratory of Quality Research in Chinese Medicine(University of Macao,Macao,China)(Grant No.:SKL-QRCMOP21006).
文摘As a ligand-dependent transcription factor,retinoid-associated orphan receptor gt(RORγt)that controls T helper(Th)17 cell differentiation and interleukin(IL)-17 expression plays a critical role in the progression of several inflammatory and autoimmune conditions.An emerging novel approach to the therapy of these diseases thus involves controlling the transcriptional capacity of RORγt to decrease Th17 cell development and IL-17 production.Several RORγt inhibitors including both antagonists and inverse agonists have been discovered to regulate the transcriptional activity of RORγt by binding to orthosteric-or allosteric-binding sites in the ligand-binding domain.Some of small-molecule inhibitors have entered clinical evaluations.Therefore,in current review,the role of RORγt in Th17 regulation and Th17-related inflammatory and autoimmune diseases was highlighted.Notably,the recently developed RORγt inhibitors were summarized,with an emphasis on their optimization from lead compounds,efficacy,toxicity,mechanisms of action,and clinical trials.The limitations of current development in this area were also discussed to facilitate future research.
基金funded by the National Natural Science Foundation of China(Grant No.U19A2098)the open fund of MOE Key Laboratory of Deep Underground Science and Engineering(Grant No.DESEYU202101)the Sichuan Science and Technology Program(Grant No.2021YJ0511)。
文摘Tunnels in fractured rock masses are typically damaged by dynamic disturbances from various directions.To investigate the influence of blasting load directions on the stability of a tunnel with a precrack nearby,blasting tests were conducted on the physical models of an external crack around a tunnel(ECT)in this study.Failure modes of the tunnels were analysed based on stress wave theory.The Riedel-Hiermaier-Thoma(RHT)material model was employed to perform the numerical simulations on ECT models.Stress distribution around the tunnels and final failure patterns of the tunnels were characterised.The results show that,under blasting loads,the pre-crack propagates and then new cracks initiates on the incident side of the tunnel.These cracks extend towards each other and eventually coalesce.Blasting load directions significantly influence the ultimate failure mode of the tunnel in the fractured rock masses.The new cracks on the shadow side of the tunnel appear at different positions when the blasting stress waves come from various directions.The results are meaningful to the analysis of tunnel stability and optimisation of the tunnel support scheme.
文摘Albumin has been widely applied for rational design of drug delivery complexes as natural carriers in cancer therapy due to its distinct advantages of biocompatibility,abundance,low toxicity and versatile property.Hence,various types of multifunctional albumin-based nanoplatforms(MAlb-NPs)that adopt multiple imaging and therapeutic techniques have been developed for cancer diagnosis and treatment.Stimuli-responsive release,including reduction-sensitive,p H-responsive,concentration-dependent and photodynamic-triggered,is important to achieve low-toxicity cancer therapy.Several types of imaging techniques can synergistically improve the effectiveness of cancer therapy.Therefore,combinational theranostic is considered to be a prospective strategy to improve treatment efficiency,minimize side effects and reduce drug resistance,which has received tremendous attentions in recent years.In this review,we highlight several stimuli-responsive albumin nanoplatforms for combinational theranostic.
文摘This paper analyzed the applicable conditions of the Green-Wave traffic theory, used two-phase signal control concept to optimize the Green-Wave traffic theory, put forward specific program for cross intersections and T-intersections. The analysis concluded that the optimized Green-Wave traffic theory is favorable to improve road safety and reduce vehicle fuel consumption and reduce vehicle emissions and other aspects.
基金the National Natural Science Foundation of China(grant nos.52003094 and 51933005)the Fundamental Research Funds for the Central Universities(grant no.2020kfyXJJS011).
文摘Photonic crystal(PC)patterns with tunable and changeable nonvolatile structural colors printed from a single ink are of great interest for optical products but have rarely been reported because most inks can only output one respective structural color.Herein,we propose a facile yet effective kinetically controlled self-assembly strategy to address this challenge.An ink formulation containing supramolecular block copolymers(SBCPs)is developed.SBCP patterns were printed by direct-ink-writing followed by solvent annealing to generate different structural colors by simply controlling the annealing time.The self-assembly kinetic regime suggests that different colors result from various kinetically trapped metastable states.In turn,the variation in structural color enables“visualization”of the self-assembly dynamics.Furthermore,we demonstrate that these kinetically trapped structures exhibit different responsive color-change behaviors.In addition,this kinetic control strategy can be synergistic with thermodynamic control to extend the color range.This study provides a facile yet effective solution for well-designed PC patterns with tunable,responsive,and unfading colors printed from the simplest single-nozzle printer with a single colorless ink,presenting great potential in broad applications,including information storage,encryption,and anti-fake.
基金The authors are grateful for the financial support of the National Natural Science Foundation of China(Grant No.51674030)the National Key Research and Development Program of China(Grant No.2016YFB0601301).
文摘Dephosphorisation basic oxygen furnaces (deP-BOFs) greatly differ from conventional BOFs in the melting process, especially its many limits on adding scrap. A mathematical model of the steel scrap melting process was established in MATLAB to investigate the mechanism of scrap melting in deP-BOF in terms of coupling effects of the carbon content of the molten steel, temperature, scrap preheating and converter blowing time on the melting rate and size of the steel scraps. The scrap melting rate was influenced by both the heat and mass transfer during the melting process: at 1350℃, when the carbon content was increased from 4.5 to 5.0 mass%, the scrap melting rate increased by 43%;for the carbon content of 4.5 mass%, when the temperature was increased from 1350 to 1400℃, the scrap melting rate increased by 60%. The carbonisation was found to be the restrictive step of the scrap melting process in deP-BOFs with respect to conventional ones. The scrap heating from room temperature to 800℃ reduced the crusting thickness on the scrap surface but there was no obvious influence on the melting rate. The scrap melting size in the deP-BOF was rather limited by its low melting rate and short melting time.
基金National Natural Science Foundation of China(Grant Nos.51674030 and 51574032)National Key Research and Development Program of China(Grant No.2016YFB0601301).
文摘The models for calculating the heat transfer in converters allow the accurate control of heat dissipation caused by downtime,and thus help in crease scrap ratio and reduce energy consumptio n.ANSYS 17 was used to establish such a model to analyse the coupling law between the downtime and heat dissipation of the converter and the temperature drop of molten iron.Temperature was measured by infrared detection,and model accuracy was verified by comparative analysis.The variation law of the amount of cold charge added for different downtimes under different process conditions was studied.The results show that the range of the variation of heat dissipation caused by downtime is 8.9-78.5 GJ.If the downtime increases by 30 min,heat dissipation of dephosphorisation(deP)and decarburisation(deC)converters increases by about 23.4 and 41.3 GJ,respectively.In a certain smelting cycle,the temperature drop of the molten iron for deP,deC and conventional converters increases by about 12.5,15.0 and 17.0 K,respectively;and the amount of scrap added in the double-linking and conventional smelting processes decreases by 0.93 and 0.75%,respectively.
文摘The Unsteady Vortex Lattice Method(UVLM) is a medium-fidelity aerodynamic tool that has been widely used in aeroelasticity and flight dynamics simulations. The most timeconsuming step is the evaluation of the induced velocity. Supposing that the number of bound and wake lattices is N and the computational cost is O (N2), we present an OeNT Dipole Panel Fast Multipole Method(DPFMM) for the rapid evaluation of the induced velocity in UVLM. The multipole expansion coefficients of a quadrilateral dipole panel have been derived in spherical coordinates, whose accuracy is the same as that of the Biot-Savart kernel at the same truncation degree P.Two methods(the loosening method and the shrinking method) are proposed and tested for space partitioning volumetric panels. Compared with FMM for vortex filaments(with three harmonics),DPFMM is approximately two times faster for N2 [103,106]. The simulation time of a multirotor(N~104) is reduced from 100 min(with unaccelerated direct solver) to 2 min(with DPFMM).
基金Project supported by the National Key Research and Development Program of China(No.2017YFE0125100)the National Natural Science Foundation of China(No.51876134)the Research Plan of Science and Technology of Tianjin City(No.18YDYGHZ00090),China
基金supported by Key Laboratory For Environmental Factors Control of Agro-product Quality Safety,Ministry of Agriculture and Rural Affairs(No.2018hjyzkfkt-002)Qian Xuesen Laboratory of Space Technology,CAST(No.GZZKFJJ2020002)National Research Program for Key Issues in Air Pollution Control(No.DQGG-05-30)
文摘Atmospheric particulate matter pollution has attracted much wider attention globally.In recent years,the development of atmospheric particle collection techniques has put forwards new demands on the real-time source apportionments techniques.Such demands are summarized,in this paper,as how to set up new restraints in apportionment and how to develop a non-linear regression model to process complicated circumstances,such as the existence of secondary source and similar source.In this study,we firstly analyze the possible and potential restraints in single particle source apportionment,then propose a novel three-step self-feedback long short-term memory(SF-LSTM)network for approximating the source contribution.The proposed deep learning neural network includes three modules,as generation,scoring and refining,and regeneration modules.Benefited from the scoring modules,SF-LSTM implants four loss functions representing four restraints to be followed in the apportionment,meanwhile,the regeneration module calculates the source contribution in a non-linear way.The results show that the model outperforms the conventional regression methods in the overall performance of the four evaluation indicators(residual sum of squares,stability,sparsity,negativity)for the restraints.Additionally,in short time-resolution analyzing,SF-LSTM provides better results under the restraint of stability.
基金The work described in this paper was supported by the National Key Research and Development Plan under Grant No.2018YFB1501004.
文摘Converting thermal energy into mechanical work by means of Organic Rankine Cycle is a validated technology to exploit low-grade waste heat.The typical design process of Organic Rankine Cycle system,which commonly in-volves working fluid selection,cycle configuration selection,operating parameters optimization,and component selection and sizing,is time-consuming and highly dependent on engineer’s experience.Thus,it is difficult to achieve the optimal design in most cases.In recent decades,artificial intelligence has been gradually introduced into the design of energy system to overcome above shortcomings.In order to clarify the research field of arti-ficial intelligence technique in Organic Rankine Cycle design and guide artificial intelligence technique to assist Organic Rankine Cycle design better,this study presents a preliminary literature summary on recent progresses of artificial intelligence technique in organic Rankine cycle systems design.First,this study analyzes four main procedures which constitute a typical design process of Organic Rankine Cycle systems and finds that design problems encountered during design process can be divided into three categories:decision making,parameter optimization and parameter prediction.In the second section,a detailed literature review on each design proce-dures using artificial intelligence algorithms is presented.At last,the state of art in this field and the prospects for the future work are provided.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(No.52003094)the Fundamental Research Funds for the Central Universities(No.2020kfyXJJS011)。
文摘A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route.More specifically,polystyrene-b-poly(4-vinyl pyridine)(PS-b-P4VP)particles with sphere-within-sphere structure(SS particles)are prepared by three-dimensional(3D)soft-confined assembly through emulsion-solvent evaporation,followed by 3D soft-confined solvent annealing upon the SS particles in aqueous dispersions for structural engineering.A water-miscible solvent(e.g.,THF)is employed for annealing,which results in dramatic transitions of the assemblies,e.g.,from SS particles to polymersomes.This approach works for PS-b-P4VP in a wide range of block ratios.Moreover,this method enables effective encapsulation/loading of cargoes such as fluorescent dyes and metal nanoparticles,which offers a new route to prepare polymersomes that could be applied for cargo release,diagnostic imaging,and nanoreactor,etc.
基金financially supported by the National Natural Science Foundation of China (Nos.21774031,21861162010and 21574038)the Clinical Research Plan of SHDC (No.SHDC2020CR4024)the Natural Science Foundation of Shanghai (No.18ZR1410300)。
文摘Contact-killing antimicrobial coatings based on host defense peptides(HDPs) and their synthetic mimics have shown potential as powerful tools to combat implant-associated infections. Covalent modification of the antimicrobial surface has been utilized to prevent early-stage microbial infections owing to the less drug-leaching possibility that is beneficial to human health and the natural environment. Although considerable progress has been achieved in preparing contact-killing antimicrobial surfaces, discussions focusing on the in vitro and in vivo evaluations of these surfaces are limited. In this review, we summarized the established in vitro methods to simulate the practical interaction of microbes with the surrounding biological environment and the reported in vivo studies at different implant sites. We suggested that the in vivo specific site infection model is essential to gain a comprehensive understanding of these antimicrobial coatings in the preclinical stage, which can be established based on investigations performed using various in vitro assays and conventional non-specific site infection models. Overall, these precedent studies focusing on bacterial contact-killing coatings modified with HDPs and HDP mimics can be considered as critical to assess the surface antibacterial ability and to guide the future developments and applications of antimicrobial surfaces.