期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
VPFL:A verifiable privacy-preserving federated learning scheme for edge computing systems 被引量:2
1
作者 Jiale Zhang Yue Liu +3 位作者 Di Wu shuai lou Bing Chen Shui Yu 《Digital Communications and Networks》 SCIE CSCD 2023年第4期981-989,共9页
Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the centra... Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the central server.However,the frequently transmitted local gradients could also leak the participants’private data.To protect the privacy of local training data,lots of cryptographic-based Privacy-Preserving Federated Learning(PPFL)schemes have been proposed.However,due to the constrained resource nature of mobile devices and complex cryptographic operations,traditional PPFL schemes fail to provide efficient data confidentiality and lightweight integrity verification simultaneously.To tackle this problem,we propose a Verifiable Privacypreserving Federated Learning scheme(VPFL)for edge computing systems to prevent local gradients from leaking over the transmission stage.Firstly,we combine the Distributed Selective Stochastic Gradient Descent(DSSGD)method with Paillier homomorphic cryptosystem to achieve the distributed encryption functionality,so as to reduce the computation cost of the complex cryptosystem.Secondly,we further present an online/offline signature method to realize the lightweight gradients integrity verification,where the offline part can be securely outsourced to the edge server.Comprehensive security analysis demonstrates the proposed VPFL can achieve data confidentiality,authentication,and integrity.At last,we evaluate both communication overhead and computation cost of the proposed VPFL scheme,the experimental results have shown VPFL has low computation costs and communication overheads while maintaining high training accuracy. 展开更多
关键词 Federated learning Edge computing PRIVACY-PRESERVING Verifiable aggregation Homomorphic cryptosystem
下载PDF
术前鼻窦CT Lund-Mackay评分对功能性内镜鼻窦手术后鼻腔填塞物选取的预测价值 被引量:4
2
作者 徐松波 刘成珠 +5 位作者 尤国军 祁冬 吴目武 娄帅 张月婷 郭燕燕 《中华解剖与临床杂志》 2021年第6期690-695,共6页
目的探讨功能性内镜鼻窦手术(FESS)术前鼻窦CT Lund-Mackay评分对术后鼻腔填塞物选取的预测作用。方法回顾性队列研究。纳入2015年5月—2020年1月蚌埠市第一人民医院耳鼻咽喉科鼻窦炎患者50例,其中男27例、女23例,年龄4~70(32.2±4... 目的探讨功能性内镜鼻窦手术(FESS)术前鼻窦CT Lund-Mackay评分对术后鼻腔填塞物选取的预测作用。方法回顾性队列研究。纳入2015年5月—2020年1月蚌埠市第一人民医院耳鼻咽喉科鼻窦炎患者50例,其中男27例、女23例,年龄4~70(32.2±4.0)岁。50例患者均采用Messerklinger术式行FESS治疗,术后予以鼻腔填塞止血。根据鼻腔填塞材料的不同将患者分为凡士林填塞组和明胶海绵填塞组,每组25例。分别于手术前24 h和术后48 h行主观感受视觉模拟评分法(VAS)评分、鼻窦CT Lund-Mackay评分以及术后鼻腔填塞止血效果评价(以填塞期间出血<5 mL为填塞止血满意)。对影响明胶海绵填塞效果的因素进行logistic回归分析。根据鼻窦CT Lund-Mackay评分绘制预测适合明胶海绵填塞效果的受试者操作特征(ROC)曲线,以最佳截断值预测明胶海绵填塞的效果。结果两组患者性别构成、病变侧别、术前各项VAS评分比较差异均无统计学意义(P值均>0.05)。止血满意率凡士林组100%(25/25)、明胶海绵组92%(23/25),两组差异无统计学意义(χ^(2)=3.615,P>0.05)。两组患者术后填塞期总出血量及术后流涕VAS评分比较差异均无统计学意义(P值均>0.05);明胶海绵组术后鼻塞、头面部胀痛及嗅觉障碍VAS评分均低于凡士林组,差异均有统计学意义(t=4.324、4.861、5.207,P值均<0.05)。明胶海绵组患者术前鼻窦CT总评分以及筛窦CT总评分[(8.2±3.1)分、(3.1±1.9)分]均较凡士林组分值[(15.0±4.4)分、(6.5±1.4)分]更小,差异均有统计学意义(t=6.383、7.171,P值均<0.05)。logistic回归分析结果提示,鼻窦CT总分[比值比(OR)=1.366(95%CI 1.004~1.860)]及筛窦CT总分[OR=2.155(95%CI 1.155~4.021)]是明胶海绵填塞止血满意的危险因素(P值均<0.05),两者对于明胶海绵填塞止血满意均具有高度预测价值(AUC值分别为0.91、0.92,P值均<0.05)。当鼻窦CT总分<9.5分时,约登指数为0.80,预测适合明胶海绵填塞止血满意的敏感度为84.0%,特异度为96.0%;当筛窦总分<4.5分时,约登指数为0.68,预测适合明胶海绵填塞止血满意的敏感度为76.0%、特异度为92.0%。结论术前鼻窦CT Lund-Mackay评分,对于FESS术后鼻腔填塞物种类的恰当选择具有一定意义;鼻窦CT Lund-Mackay总分及筛窦CT总分较低时,选择明胶海绵进行术腔填塞,既能有效止血,又能提高患者舒适度。 展开更多
关键词 鼻窦炎 鼻窦CT评分 功能性内镜鼻窦手术 鼻腔填塞
原文传递
Simple and robust h-adaptive shock-capturing method for flux reconstruction framework 被引量:1
3
作者 Lintao HUANG Zhenhua JIANG +2 位作者 shuai lou Xin ZHANG Chao YAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期348-365,共18页
In this paper,a simple and robust shock-capturing method is developed for the Flux Reconstruction(FR)framework by combining the Adaptive Mesh Refinement(AMR)technique with the positivity-preserving property.The adapti... In this paper,a simple and robust shock-capturing method is developed for the Flux Reconstruction(FR)framework by combining the Adaptive Mesh Refinement(AMR)technique with the positivity-preserving property.The adaptive technique avoids the use of redundant meshes in smooth regions,while the positivity-preserving property makes the solver capable of providing numerical solutions with physical meaning.The compatibility of these two significant features relies on a novel limiter designed for mesh refinements.It ensures the positivity of solutions on all newly created cells.Therefore,the proposed method is completely positivity-preserving and thus highly robust.It performs well in solving challenging problems on highly refined meshes and allows the transition of cells at different levels to be completed within a very short distance.The performance of the proposed method is examined in various numerical experiments.When solving Euler equations,the technique of Local Artificial Diffusivity(LAD)is additionally coupled to damp oscillations.More importantly,when solving Navier-Stokes equations,the proposed method requires no auxiliaries and can provide satisfying numerical solutions directly.The implementation of the method becomes rather simple. 展开更多
关键词 Adaptive mesh refinement Flux reconstruction Positivity-preserving scheme Robustness SHOCK-CAPTURING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部