The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy (SECM). The results showed that SAM...The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy (SECM). The results showed that SAMs were an effective inhibition film for iron.展开更多
Most existing cell-centered finite volume schemes need to introduce auxiliary unknowns in order to maintain the second-order accuracy when the mesh is distorted or the problem is discontinuous,so interpolation algorit...Most existing cell-centered finite volume schemes need to introduce auxiliary unknowns in order to maintain the second-order accuracy when the mesh is distorted or the problem is discontinuous,so interpolation algorithms of auxiliary unknowns are required.Interpolation algorithms are not only difficult to construct,but also bring extra computation.In this paper,an interpolation-free cell-centered finite volume scheme is proposed for the heterogeneous and anisotropic convectiondiffusion problems on arbitrary polyhedral meshes.We propose a new interpolationfree discretization method for diffusion term,and two new second-order upwind algorithms for convection term.Most interestingly,the scheme can be adapted to any mesh topology and can handle any discontinuity strictly.Numerical experiments show that this new scheme is robust,possesses a small stencil,and has approximately secondorder accuracy for both diffusion-dominated and convection-dominated problems.展开更多
基金the National Natural Science Foundation of China(No.20573069)for financial support of this research.
文摘The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy (SECM). The results showed that SAMs were an effective inhibition film for iron.
基金partially supported by the National Natural Science Foundation of China(Nos.11871009,12271055,12171048)the foundation of CAEP(CX20210044)the Foundation of LCP.
文摘Most existing cell-centered finite volume schemes need to introduce auxiliary unknowns in order to maintain the second-order accuracy when the mesh is distorted or the problem is discontinuous,so interpolation algorithms of auxiliary unknowns are required.Interpolation algorithms are not only difficult to construct,but also bring extra computation.In this paper,an interpolation-free cell-centered finite volume scheme is proposed for the heterogeneous and anisotropic convectiondiffusion problems on arbitrary polyhedral meshes.We propose a new interpolationfree discretization method for diffusion term,and two new second-order upwind algorithms for convection term.Most interestingly,the scheme can be adapted to any mesh topology and can handle any discontinuity strictly.Numerical experiments show that this new scheme is robust,possesses a small stencil,and has approximately secondorder accuracy for both diffusion-dominated and convection-dominated problems.