钠-葡萄糖共转运蛋白2抑制剂(sodium-glucose cotransporter type 2 inhibitors,SGLT2i)作为一类新型有效的2型糖尿病治疗剂,已被证实在患有和未患有糖尿病的患者中具有抗心律失常作用。多项临床研究已证实这些药物具有防治心房颤动的作...钠-葡萄糖共转运蛋白2抑制剂(sodium-glucose cotransporter type 2 inhibitors,SGLT2i)作为一类新型有效的2型糖尿病治疗剂,已被证实在患有和未患有糖尿病的患者中具有抗心律失常作用。多项临床研究已证实这些药物具有防治心房颤动的作用,其抗心律失常机制包括抑制心房重构、改善线粒体功能、减弱交感神经系统活动、调节钠稳态和钙稳态。本文简要介绍了SGLT2i在心房颤动中的作用机制,以期为临床防治心房颤动提供新的治疗策略。展开更多
Redundancy control can effectively enhance the stability and robustness of a system.Based on the conventional redundancy control switchover and majority arbitration strategy,this paper introduces the concept of hetero...Redundancy control can effectively enhance the stability and robustness of a system.Based on the conventional redundancy control switchover and majority arbitration strategy,this paper introduces the concept of heterogeneity and dynamics,constructs a dynamic heterogeneous redundancy-based microcontroller architecture DHR-MCU,and designs a fixed-leader distributed consensus algorithm that satisfies the program running state control of this architecture.The theoretical analysis and actual measurement of the prototype system prove that this architecture has good anti-attack and self-recovery capabilities under normal functions and performances and meets the general robust features in terms of safety and security.展开更多
Resident and inflammatory macrophages are essential effectors of the innate immune system. These cells provide innate immune defenses and regulate tissue and organ homeostasis. In addition to their roles in diseases s...Resident and inflammatory macrophages are essential effectors of the innate immune system. These cells provide innate immune defenses and regulate tissue and organ homeostasis. In addition to their roles in diseases such as cancer, obesity and osteoarthritis, they play vital roles in tissue repair and disease rehabilitation. Macrophages and other inflammatory cells are recruited to tissue injury sites where they promote changes in the microenvironment. Among the inflammatory cell types, only macrophages have both pro-inflammatory (Ml) and anti-inflammatory (M2) actions, and M2 macrophages have four subtypes. The co-action of Ml and M2 subtypes can create a favorable microenvironment, releasing cytokines for damaged tissue repair. In this review, we discuss the activation of macrophages and their roles in severe peripheral nerve injury. We also describe the therapeutic potential of macrophages in nerve tissue engineering treatment and highlight approaches for enhancing M2 cell-mediated nerve repair and regeneration.展开更多
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve sc...In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.展开更多
文摘钠-葡萄糖共转运蛋白2抑制剂(sodium-glucose cotransporter type 2 inhibitors,SGLT2i)作为一类新型有效的2型糖尿病治疗剂,已被证实在患有和未患有糖尿病的患者中具有抗心律失常作用。多项临床研究已证实这些药物具有防治心房颤动的作用,其抗心律失常机制包括抑制心房重构、改善线粒体功能、减弱交感神经系统活动、调节钠稳态和钙稳态。本文简要介绍了SGLT2i在心房颤动中的作用机制,以期为临床防治心房颤动提供新的治疗策略。
文摘Redundancy control can effectively enhance the stability and robustness of a system.Based on the conventional redundancy control switchover and majority arbitration strategy,this paper introduces the concept of heterogeneity and dynamics,constructs a dynamic heterogeneous redundancy-based microcontroller architecture DHR-MCU,and designs a fixed-leader distributed consensus algorithm that satisfies the program running state control of this architecture.The theoretical analysis and actual measurement of the prototype system prove that this architecture has good anti-attack and self-recovery capabilities under normal functions and performances and meets the general robust features in terms of safety and security.
基金supported by the National Natural Science Foundation of China,No.31771052(to YW)the National Key Research&Development Program of China,No.2017YFA0104701,2017YFA0104702 and 2016YFC1101601+2 种基金the National Basic Research Program of China(973 Program),No.2014CB542201(to JP)the Natural Science Foundation of Beijing,No.7172202(to YW)the PLA Youth Training Project for Medical Science,No.16QNP144(to YW)
文摘Resident and inflammatory macrophages are essential effectors of the innate immune system. These cells provide innate immune defenses and regulate tissue and organ homeostasis. In addition to their roles in diseases such as cancer, obesity and osteoarthritis, they play vital roles in tissue repair and disease rehabilitation. Macrophages and other inflammatory cells are recruited to tissue injury sites where they promote changes in the microenvironment. Among the inflammatory cell types, only macrophages have both pro-inflammatory (Ml) and anti-inflammatory (M2) actions, and M2 macrophages have four subtypes. The co-action of Ml and M2 subtypes can create a favorable microenvironment, releasing cytokines for damaged tissue repair. In this review, we discuss the activation of macrophages and their roles in severe peripheral nerve injury. We also describe the therapeutic potential of macrophages in nerve tissue engineering treatment and highlight approaches for enhancing M2 cell-mediated nerve repair and regeneration.
基金supported by the National Key R&D Program of China,No.2017YFA0104701(to YW)the National Natural Science Foundation of China,No.31771052(to YW)+1 种基金the Natural Science Foundation of Beijing of China,No.7172202(to YW)the PLA Youth Training Project for Medical Science of China,No.16QNP144(to YW)
文摘In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.