A one-dimensional(1D) fluid simulation of dual frequency discharge in helium gas at atmospheric pressure is carried out to investigate the role of the secondary electron emission on the surfaces of the electrodes. In ...A one-dimensional(1D) fluid simulation of dual frequency discharge in helium gas at atmospheric pressure is carried out to investigate the role of the secondary electron emission on the surfaces of the electrodes. In the simulation, electrons,ions of He^+ and He_2^+, metastable atoms of He*and metastable molecules of He*_2 are included. It is found that the secondary electron emission coefficient significantly influences plasma density and electric field as well as electron heating mechanisms and ionization rate. The particle densities increase with increasing SEE coefficient from 0 to 0.3 as well as the sheath's electric field and electron source. Moreover, the SEE coefficient also influences the electron heating mechanism and electron power dissipation in the plasma and both of them increase with increasing SEE coefficient within the range from 0 to 0.3 as a result of increasing of electron density.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11505089)
文摘A one-dimensional(1D) fluid simulation of dual frequency discharge in helium gas at atmospheric pressure is carried out to investigate the role of the secondary electron emission on the surfaces of the electrodes. In the simulation, electrons,ions of He^+ and He_2^+, metastable atoms of He*and metastable molecules of He*_2 are included. It is found that the secondary electron emission coefficient significantly influences plasma density and electric field as well as electron heating mechanisms and ionization rate. The particle densities increase with increasing SEE coefficient from 0 to 0.3 as well as the sheath's electric field and electron source. Moreover, the SEE coefficient also influences the electron heating mechanism and electron power dissipation in the plasma and both of them increase with increasing SEE coefficient within the range from 0 to 0.3 as a result of increasing of electron density.