Hydrogen economy,as the most promising alternative energy system,relies on the hydrogen production through sustainable water splitting which in turn relies on the high efficiency electrocatalysts.PtAuCu A1-phase alloy...Hydrogen economy,as the most promising alternative energy system,relies on the hydrogen production through sustainable water splitting which in turn relies on the high efficiency electrocatalysts.PtAuCu A1-phase alloy has been predicted to be a promising electrocatalyst for the hydrogen evolution.As such preferred phase of Pt-Au-Cu is not thermodynamically favored,herein,we stabilize PtAuCu alloy by engineering the high-entropy phase in the form of nanowire.Density functional theory(DFT)calculations indicate that,in comparison with the ordered phase and segregated phases with discrete hydrogen binding energy,the high-entropy phase provides a diverse combination of site composition to continuously tune the hydrogen binding energy,and thus generate a series of highly active sites for the hydrogen evolution.Reflecting the theoretical prediction,electrochemical tests show that the A1-phase PtAuCu nanowire significantly outperforms its nanoparticle counterpart with phase segregation,toward the electrocatalysis of hydrogen evolution,offering one of the best hydrogen evolution electrocatalysts.展开更多
基金supported by the National Natural Science Foundation of China(NSF-C)(Nos.21773023 and 21972016)。
文摘Hydrogen economy,as the most promising alternative energy system,relies on the hydrogen production through sustainable water splitting which in turn relies on the high efficiency electrocatalysts.PtAuCu A1-phase alloy has been predicted to be a promising electrocatalyst for the hydrogen evolution.As such preferred phase of Pt-Au-Cu is not thermodynamically favored,herein,we stabilize PtAuCu alloy by engineering the high-entropy phase in the form of nanowire.Density functional theory(DFT)calculations indicate that,in comparison with the ordered phase and segregated phases with discrete hydrogen binding energy,the high-entropy phase provides a diverse combination of site composition to continuously tune the hydrogen binding energy,and thus generate a series of highly active sites for the hydrogen evolution.Reflecting the theoretical prediction,electrochemical tests show that the A1-phase PtAuCu nanowire significantly outperforms its nanoparticle counterpart with phase segregation,toward the electrocatalysis of hydrogen evolution,offering one of the best hydrogen evolution electrocatalysts.