期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
In situ TEM visualization of Ag catalysis in Li-O_(2)nanobatteries 被引量:3
1
作者 Yixuan Wen shuaijun ding +10 位作者 Chongchong Ma Peng Jia Wei Tu Yunna Guo Shuang Guo Wei Zhou Xiaoqian Zhang Jianyu Huang Liqiang Zhang Tongde Shen Yuqing Qiao 《Nano Research》 SCIE EI CSCD 2023年第5期6833-6839,共7页
Lithium-oxygen(Li-O_(2))batteries have been considered as an ideal solution to solving the global energy crisis.Silver(Ag)and Agbased catalyst have been extensively studied due to their high catalytic activities in Li... Lithium-oxygen(Li-O_(2))batteries have been considered as an ideal solution to solving the global energy crisis.Silver(Ag)and Agbased catalyst have been extensively studied due to their high catalytic activities in Li-O_(2)batteries.However,it remains a challenge to track the catalytic mechanism during the charge/discharge process.Here,a nanoscale processing method was used to assemble a Li-O_(2)nanobattery in an aberration-corrected environmental transmission electron microscope(ETEM),where a single Ag nanowire(NW)was used as catalyst for O_(2)electrode.A visualization of the lithium ion insertion process during the electrochemical reactions was achieved in this nanobattery.Numerous Ag nanoparticles(NPs)were observed on the surface of the Ag NW,which were covered by the discharge product Li2O_(2).By simultaneously studying the evolution of the interface and the phase transformation,it can be concluded that these Ag NPs wrapped around Ag NW acted as catalyst during the subsequent charge/discharge reaction.Based on these studies,Ag NPs decorated on porous carbon were synthesized,it can simultaneously improve the cycling stability(100 cycles)and the maximum specific capacity(17,371 mAh·g^(−1)at a current density of 100 mA·g^(−1))in a coin cell Li-O_(2)battery.This study suggests that nanoscale Ag may be a promising catalyst for Li-O_(2)battery. 展开更多
关键词 Li-O_(2)battery in situ environmental transmission electron microscopy catalyst Ag nanoparticles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部