Solid particle erosion is a common phenomenon in engineering fields,such as manufacturing,energy,military and aviation.However,with the rising industrial requirements,the development of anti-solid particle erosion mat...Solid particle erosion is a common phenomenon in engineering fields,such as manufacturing,energy,military and aviation.However,with the rising industrial requirements,the development of anti-solid particle erosion materials remains a great challenge.After billions of years of evolution,several natural materials exhibit unique and exceptional solid particle erosion resistance.These materials achieved the same excellent solid particle erosion resistance performance through diversified strategies.This resistance arises from their micro/nanoscale surface structure and interface material properties,which provide inspiration for novel multiple solutions to solid particle erosion.Here,this review first summarizes the recent significant process in the research of natural anti-solid particle erosion materials and their general design principles.According to these principles,several erosion-resistant structures are available.Combined with advanced micro/nanomanufacturing technologies,several artificial anti-solid particle erosion materials have been obtained.Then,the potential applications of anti-solid particle erosion materials are prospected.Finally,the remaining challenges and promising breakthroughs regarding anti-solid particle erosion materials are briefly discussed.展开更多
The remarkable mechanical adaptability of arapaima(Arapaima gigas)scales has made them an important subject of study.However,no research has been conducted into their tribological properties,which are crucial for the ...The remarkable mechanical adaptability of arapaima(Arapaima gigas)scales has made them an important subject of study.However,no research has been conducted into their tribological properties,which are crucial for the protectability and flexibility of arapaimas.In this study,by combining morphological characterizations,friction experiments,and theoretical analyses,the relationship between the surface morphology and tribological properties of arapaima scales is determined.These results indicate that arapaima scales exhibit varying surface morphologies in different regions.More specifically,the exposed regions of scales feature grooves and a circulus,whereas the covered regions exhibit bumps.The specific surface morphology of arapaima scales produces varying tribological properties across different regions and sliding directions.The unique tribological properties of arapaima scales influence the forces received from predator attacks and neighboring scales,directly influencing the arapaima’s protective capabilities.This study provides new insights into the mechanisms of natural flexible dermal armors,and it has potential applications in personal protective systems.展开更多
The key role of structural cells in immune modulation has been revealed with the advent of single-cell multiomics,but the underlying mechanism remains poorly understood.Here,we revealed that the transcriptional activa...The key role of structural cells in immune modulation has been revealed with the advent of single-cell multiomics,but the underlying mechanism remains poorly understood.Here,we revealed that the transcriptional activation of interferon regulatory factor 1(IRF1)in response to ionizing radiation,cytotoxic chemicals and SARS-CoV-2 viral infection determines the fate of structural cells and regulates communication between structural and immune cells.Radiation-induced leakage of mtDNA initiates the nuclear translocation of IRF1,enabling it to regulate the transcription of inflammation-and cell death-related genes.Novel posttranslational modification(PTM)sites in the nuclear localization sequence(NLS)of IRF1 were identified.Functional analysis revealed that mutation of the acetylation site and the phosphorylation sites in the NLS blocked the transcriptional activation of IRF1 and reduced cell death in response to ionizing radiation.Mechanistically,reciprocal regulation between the single-stranded DNA sensors SSBP1 and IRF1,which restrains radiation-induced and STING/p300-mediated PTMs of IRF1,was revealed.In addition,genetic deletion or pharmacological inhibition of IRF1 tempered radiation-induced inflammatory cell death,and radiation mitigators also suppressed SARS-CoV-2 NSP-10-mediated activation of IRF1.Thus,we revealed a novel cytoplasm-oriented mechanism of IRF1 activation in structural cells that promotes inflammation and highlighted the potential effectiveness of IRF1 inhibitors against immune disorders.展开更多
Solid particle erosion on the material surfaces is a very common phenomenon in the industrial field,which greatly affects the efficiency,service life,and even poses a great threat to life safety.However,current resear...Solid particle erosion on the material surfaces is a very common phenomenon in the industrial field,which greatly affects the efficiency,service life,and even poses a great threat to life safety.However,current research on erosion resistance is not only inefficient,but also limited to the improvement of hardness and toughness of materials.Inspired by typical scorpion(Parabuthus transvaalicus),biomimetic functional samples with exquisite anti-rosion structures were manufactured.Macroscopic morphology and structure of the biological prototype were analyzed and measured.According to above analysis,combined with response surface methodology,a set of biomimetic samples with different structural parameters were fabricated by using 3D printing technology.The anti-crosion performance of these biomimetic samples was investigated using a blasting jet machine.Based on the results of blasting jet test,as well as regression analysis and fiting,the optimal structural parameters were obtained.In addition to the static test conditions,the optimal biomimetic sample was also eroded in rotating condition and showed excellent erosion resistance property.The presence of bump and groove structures,on the one hand,reduced the croded area of biominetic sample surface.On the other hand,they made the airlow turbulent and consequently reduced the impact cnergy of solid particles,which significantly improved the erosion resistance of biomimetic materials.This study provides a new strategy to improvethe service life of components easily affected by erosion in the aviation,energy and military fields.展开更多
基金Supported by National Key Research and Development Program of China(Grant No.2018YFA0703300)National Natural Science Foundation of China(Grant Nos.51835006,51875244,51675220,U19A20103)+9 种基金JLU Science and Technology Innovative Research Team(Grant No.2017TD-04)China Postdoctoral Science Foundation Funded Project(Grant No.2018T110246)Science and Technology Research Project of Education Department of Jilin Province(Grant Nos.20190141,JJKH20190135KJ)Joint Construction Project of Jilin University and Jilin Province(Grant No.SF2017-3-4)Scientific and Technological Development Program of Changchun City(Double Ten Project-19SS001)Science and Technology Development Program of Jilin Province(Technology R&D Project-20190302021GX)Graduate Innovation Fund of Jilin University(Grant No.2016020)Postdoctoral Innovative Talent Support Program(Grant No.BX20190139)Joint Fund of the Ministry of Education for Equipment Research(Grant No.6141A02022131)Fundamental Research Funds for the Central Universities.
文摘Solid particle erosion is a common phenomenon in engineering fields,such as manufacturing,energy,military and aviation.However,with the rising industrial requirements,the development of anti-solid particle erosion materials remains a great challenge.After billions of years of evolution,several natural materials exhibit unique and exceptional solid particle erosion resistance.These materials achieved the same excellent solid particle erosion resistance performance through diversified strategies.This resistance arises from their micro/nanoscale surface structure and interface material properties,which provide inspiration for novel multiple solutions to solid particle erosion.Here,this review first summarizes the recent significant process in the research of natural anti-solid particle erosion materials and their general design principles.According to these principles,several erosion-resistant structures are available.Combined with advanced micro/nanomanufacturing technologies,several artificial anti-solid particle erosion materials have been obtained.Then,the potential applications of anti-solid particle erosion materials are prospected.Finally,the remaining challenges and promising breakthroughs regarding anti-solid particle erosion materials are briefly discussed.
基金the National Natural Science Foundation of China(Nos.52275198,52205206)the Opening Project of the Key Laboratory of Bionic Engineering(Ministry of Education),Jilin University(No.K202201).
文摘The remarkable mechanical adaptability of arapaima(Arapaima gigas)scales has made them an important subject of study.However,no research has been conducted into their tribological properties,which are crucial for the protectability and flexibility of arapaimas.In this study,by combining morphological characterizations,friction experiments,and theoretical analyses,the relationship between the surface morphology and tribological properties of arapaima scales is determined.These results indicate that arapaima scales exhibit varying surface morphologies in different regions.More specifically,the exposed regions of scales feature grooves and a circulus,whereas the covered regions exhibit bumps.The specific surface morphology of arapaima scales produces varying tribological properties across different regions and sliding directions.The unique tribological properties of arapaima scales influence the forces received from predator attacks and neighboring scales,directly influencing the arapaima’s protective capabilities.This study provides new insights into the mechanisms of natural flexible dermal armors,and it has potential applications in personal protective systems.
基金National Natural Science Foundation of China 82073477(SZ),32071238(DY)and 82203973(FG)Scientific Fund for Distinguished Young Scholars in Sichuan Province 2022JDJQ0051(SZ)and 2022NSFSC0797(CS)and Young Talent Project of China National Nuclear Corporation(SZ).
文摘The key role of structural cells in immune modulation has been revealed with the advent of single-cell multiomics,but the underlying mechanism remains poorly understood.Here,we revealed that the transcriptional activation of interferon regulatory factor 1(IRF1)in response to ionizing radiation,cytotoxic chemicals and SARS-CoV-2 viral infection determines the fate of structural cells and regulates communication between structural and immune cells.Radiation-induced leakage of mtDNA initiates the nuclear translocation of IRF1,enabling it to regulate the transcription of inflammation-and cell death-related genes.Novel posttranslational modification(PTM)sites in the nuclear localization sequence(NLS)of IRF1 were identified.Functional analysis revealed that mutation of the acetylation site and the phosphorylation sites in the NLS blocked the transcriptional activation of IRF1 and reduced cell death in response to ionizing radiation.Mechanistically,reciprocal regulation between the single-stranded DNA sensors SSBP1 and IRF1,which restrains radiation-induced and STING/p300-mediated PTMs of IRF1,was revealed.In addition,genetic deletion or pharmacological inhibition of IRF1 tempered radiation-induced inflammatory cell death,and radiation mitigators also suppressed SARS-CoV-2 NSP-10-mediated activation of IRF1.Thus,we revealed a novel cytoplasm-oriented mechanism of IRF1 activation in structural cells that promotes inflammation and highlighted the potential effectiveness of IRF1 inhibitors against immune disorders.
基金supported by the National Key Research and Development Program of China(No.2018YFA0703300)the National Natural Science Foundation of China(Nos.51835006,51675220 and 51875244)+5 种基金the Pre-research Joint Foundation of Equipment Development Department and Ministry of Education(No.6141A02022131)the JLU Science and Technology Innovative Research Team(No.2017TD-04)the Joint Construction Project of Jilin University and Jilin Province(No.SF2017-3-4)the Natural Science Foundation of Jilin Province of China(No.20170101115JC)the Science and technology research project of education department of Jilin province(No.20190141)the Opening Project of the Key Laboratory of Bionic Enginccring(Ministry of Education),Jilin University(No.KF20200002).
文摘Solid particle erosion on the material surfaces is a very common phenomenon in the industrial field,which greatly affects the efficiency,service life,and even poses a great threat to life safety.However,current research on erosion resistance is not only inefficient,but also limited to the improvement of hardness and toughness of materials.Inspired by typical scorpion(Parabuthus transvaalicus),biomimetic functional samples with exquisite anti-rosion structures were manufactured.Macroscopic morphology and structure of the biological prototype were analyzed and measured.According to above analysis,combined with response surface methodology,a set of biomimetic samples with different structural parameters were fabricated by using 3D printing technology.The anti-crosion performance of these biomimetic samples was investigated using a blasting jet machine.Based on the results of blasting jet test,as well as regression analysis and fiting,the optimal structural parameters were obtained.In addition to the static test conditions,the optimal biomimetic sample was also eroded in rotating condition and showed excellent erosion resistance property.The presence of bump and groove structures,on the one hand,reduced the croded area of biominetic sample surface.On the other hand,they made the airlow turbulent and consequently reduced the impact cnergy of solid particles,which significantly improved the erosion resistance of biomimetic materials.This study provides a new strategy to improvethe service life of components easily affected by erosion in the aviation,energy and military fields.