期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Highly Flexible and Broad‑Range Mechanically Tunable All‑Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring
1
作者 Guihua Yan shuaiming he +9 位作者 Gaofeng Chen Sen Ma Anqi Zeng Binglin Chen Shuliang Yang Xing Tang Yong Sun Feng Xu Lu Lin Xianhai Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第5期192-205,共14页
Wood-based hydrogel with a unique anisotropic structure is an attractive soft material,but the presence of rigid crystalline cellulose in natural wood makes the hydrogel less flexible.In this study,an all-wood hydroge... Wood-based hydrogel with a unique anisotropic structure is an attractive soft material,but the presence of rigid crystalline cellulose in natural wood makes the hydrogel less flexible.In this study,an all-wood hydrogel was constructed by cross-linking cellulose fibers,polyvinyl alcohol(PVA)chains,and lignin molecules through the Hofmeister effect.The all-wood hydrogel shows a high tensile strength of 36.5 MPa and a strain up to~438%in the longitudinal direction,which is much higher than its tensile strength(~2.6 MPa)and strain(~198%)in the radial direction,respectively.The high mechanical strength of all-wood hydrogels is mainly attributed to the strong hydrogen bonding,physical entanglement,and van der Waals forces between lignin molecules,cellulose nanofibers,and PVA chains.Thanks to its excellent flexibility,good conductivity,and sensitivity,the all-wood hydrogel can accurately distinguish diverse macroscale or subtle human movements,including finger flexion,pulse,and swallowing behavior.In particular,when“An Qi”was called four times within 15 s,two variations of the pronunciation could be identified.With recyclable,biodegradable,and adjustable mechanical properties,the all-wood hydrogel is a multifunctional soft material with promising applications,such as human motion monitoring,tissue engineering,and robotics materials. 展开更多
关键词 Wood hydrogel Hofmeister effect Tunable mechanical strength FLEXIBLE BIODEGRADABLE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部