Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understan...Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method.展开更多
It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be...It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be utilized to establish the initial BRB accurately if there are multiple referential grades in different fault features.In addition,the interpretability of BRB-based fault diagnosis is destroyed in the optimization process,which reflects in two aspects:deviation from the initial expert judgment and over-optimization of parameters.To solve these problems,a new interpretable fault diagnosis model based on BRB and probability table,called the BRB-P,is proposed in this paper.Compared with the traditional BRB,the BRB-P constructed by the probability table is more accurate.Then,the interpretability constraints,i.e.,the credibility of expert knowledge,the penalty factor and the rule-activation factor,are inserted into the projection covariance matrix adaption evolution strategy to maintain the interpretability of BRB-P.A case study of the aerospace relay is conducted to verify the effectiveness of the proposed method.展开更多
Evidential Reasoning(ER)rule,which can combine multiple pieces of independent evidence conjunctively,is widely applied in multiple attribute decision analysis.However,the assumption of independence among evidence is o...Evidential Reasoning(ER)rule,which can combine multiple pieces of independent evidence conjunctively,is widely applied in multiple attribute decision analysis.However,the assumption of independence among evidence is often not satisfied,resulting in ER rule inapplicable.In this paper,an Evidential Reasoning rule for Dependent Evidence combination(ERr-DE)is developed.Firstly,the aggregation sequence of multiple pieces of evidence is determined according to evidence reliability.On this basis,a calculation method of evidence Relative Total Dependence Coefficient(RTDC)is proposed using the distance correlation method.Secondly,as a discounting factor,RTDC is introduced into the ER rule framework,and the ERr-DE model is formulated.The aggregation process of two pieces of dependent evidence by ERr-DE is investigated,which is then generalized to aggregate multiple pieces of non-independent evidence.Thirdly,sensitivity analysis is carried out to investigate the relationship between the model output and the RTDC.The properties of sensitivity coefficient are explored and mathematically proofed.The conjunctive probabilistic reasoning process of ERr-DE and the properties of sensitivity coefficient are verified by two numerical examples respectively.Finally,the practical application of the ERr-DE is validated by a case study on the performance assessment of satellite turntable system.展开更多
基金supported by the Natural Science Foundation of China (No.61833016)the Shaanxi Outstanding Youth Science Foundation (No.2020JC-34)the Shaanxi Science and Technology Innovation Team (No.2022TD-24).
文摘Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.61833016)the Shaanxi Outstanding Youth Science Foundation,China(No.2020JC-34)+1 种基金the Shaanxi Science and Technology Innovation Team,China(No.2022TD-24)the Natural Science Foundation of Heilongjiang Province of China(No.LH2021F038)。
文摘It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be utilized to establish the initial BRB accurately if there are multiple referential grades in different fault features.In addition,the interpretability of BRB-based fault diagnosis is destroyed in the optimization process,which reflects in two aspects:deviation from the initial expert judgment and over-optimization of parameters.To solve these problems,a new interpretable fault diagnosis model based on BRB and probability table,called the BRB-P,is proposed in this paper.Compared with the traditional BRB,the BRB-P constructed by the probability table is more accurate.Then,the interpretability constraints,i.e.,the credibility of expert knowledge,the penalty factor and the rule-activation factor,are inserted into the projection covariance matrix adaption evolution strategy to maintain the interpretability of BRB-P.A case study of the aerospace relay is conducted to verify the effectiveness of the proposed method.
基金co-supported by the National Natural Science Foundation of China (No. 61833016)the Shaanxi Outstanding Youth Science Foundation,China (No. 2020JC-34)the Shaanxi Science and Technology Innovation Team,China(No. 2022TD-24)
文摘Evidential Reasoning(ER)rule,which can combine multiple pieces of independent evidence conjunctively,is widely applied in multiple attribute decision analysis.However,the assumption of independence among evidence is often not satisfied,resulting in ER rule inapplicable.In this paper,an Evidential Reasoning rule for Dependent Evidence combination(ERr-DE)is developed.Firstly,the aggregation sequence of multiple pieces of evidence is determined according to evidence reliability.On this basis,a calculation method of evidence Relative Total Dependence Coefficient(RTDC)is proposed using the distance correlation method.Secondly,as a discounting factor,RTDC is introduced into the ER rule framework,and the ERr-DE model is formulated.The aggregation process of two pieces of dependent evidence by ERr-DE is investigated,which is then generalized to aggregate multiple pieces of non-independent evidence.Thirdly,sensitivity analysis is carried out to investigate the relationship between the model output and the RTDC.The properties of sensitivity coefficient are explored and mathematically proofed.The conjunctive probabilistic reasoning process of ERr-DE and the properties of sensitivity coefficient are verified by two numerical examples respectively.Finally,the practical application of the ERr-DE is validated by a case study on the performance assessment of satellite turntable system.