Abstract NoSQL databases are famed for the characteristics of high scalability, high availability, and high faulttolerance. So NoSQL databases are used in a lot of applications. The data partitioning strategy and frag...Abstract NoSQL databases are famed for the characteristics of high scalability, high availability, and high faulttolerance. So NoSQL databases are used in a lot of applications. The data partitioning strategy and fragment allocation strategy directly affect NoSQL database systems' performance. The data partition strategy of large, global databases is performed by horizontally, vertically partitioning or combination of both. In the general way the system scatters the related fragments as possible to improve operations' parallel degree. But the operations are usually not very complicated in some applications, and an operation may access to more than one fragment. At the same time, those fragments which have to be accessed by an operation may interact with each other. The general allocation strategies will increase system's communication cost during operations execution over sites. In order to improve those applications' performance and enable NoSQL database systems to work efficiently, these applications' fragments have to be allocated in a reasonable way that can reduce the communication cost i.e., to minimize the total volume of data transmitted during operations execution over sites. A strategy of clustering fragments based onhypergraph is proposed, which can cluster fragments which were accessed together in most operations to the same cluster. The method uses a weighted hypergraph to represent the fragments' access pattem of operations. A hypergraph partitioning algorithm is used to cluster fragments in our strategy. This method can reduce the amount of sites that an operation has to span. So it can reduce the communication cost over sites. Experimental results confirm that the proposed technique will effectively contribute in solving fragments re-allocation problem in a specific application environment of NoSQL database system.展开更多
Cloud computing is deemed the next-generation information technology(IT) platform, in which a data center is crucial for providing a large amount of computing and storage resources for various service applications wit...Cloud computing is deemed the next-generation information technology(IT) platform, in which a data center is crucial for providing a large amount of computing and storage resources for various service applications with high quality guaranteed. However, cloud users no longer possess their data in a local data storage infrastructure,which would result in auditing for the integrity of outsourced data being a challenging problem, especially for users with constrained computing resources. Therefore, how to help the users complete the verification of the integrity of the outsourced data has become a key issue. Public verification is a critical technique to solve this problem, from which the users can resort to a third-party auditor(TPA) to check the integrity of outsourced data. Moreover,an identity-based(ID-based) public key cryptosystem would be an efficient key management scheme for certificatebased public key setting. In this paper, we combine ID-based aggregate signature and public verification to construct the protocol of provable data integrity. With the proposed mechanism, the TPA not only verifies the integrity of outsourced data on behalf of cloud users, but also alleviates the burden of checking tasks with the help of users' identity. Compared to previous research, the proposed scheme greatly reduces the time of auditing a single task on the TPA side. Security analysis and performance evaluation results show the high efficiency and security of the proposed scheme.展开更多
Network virtualization is recognized as an effective way to overcome the ossification of the Internet. However, the virtual network mapping problem (VNMP) is a critical challenge, focusing on how to map the virtual ne...Network virtualization is recognized as an effective way to overcome the ossification of the Internet. However, the virtual network mapping problem (VNMP) is a critical challenge, focusing on how to map the virtual networks to the substrate network with efficient utilization of infrastructure resources. The problem can be divided into two phases: node mapping phase and link mapping phase. In the node mapping phase, the existing algorithms usually map those virtual nodes with a complete greedy strategy, without considering the topology among these virtual nodes, resulting in too long substrate paths (with multiple hops). Addressing this problem, we propose a topology awareness mapping algorithm, which considers the topology among these virtual nodes. In the link mapping phase, the new algorithm adopts the k-shortest path algorithm. Simulation results show that the new algorithm greatly increases the long-term average revenue, the acceptance ratio, and the long-term revenue-to-cost ratio (R/C).展开更多
In order to simulate multiscale problems such as turbulent flows effectively, the high-order accurate reconstruction based on minimized dispersion and controllable dissipation(MDCD) is implemented in the second-order ...In order to simulate multiscale problems such as turbulent flows effectively, the high-order accurate reconstruction based on minimized dispersion and controllable dissipation(MDCD) is implemented in the second-order accurate gas-kinetic scheme(GKS) to improve the accuracy and resolution. MDCD is firstly extended to non-uniform grids through the modification of dissipation and dispersion coefficients for uniform grids based on the local stretch ratio. Remarkable improvements in accuracy and resolution are achieved on general grids. Then a new scheme, MDCD-GKS is constructed, with the help of MDCD reconstruction, not only for conservative variables, but also for their gradients. MDCD-GKS shows good accuracy and efficiency in typical numerical tests.MDCD-GKS is also coupled with the improved delayed detached-eddy simulation(IDDES) hybrid model and applied in the fine simulation of turbulent flow around a cylinder, and the prediction is in good agreement with experiments when using the relatively coarse grid. The high accuracy and resolution of the developed GKS guarantee its high efficiency in practical applications.展开更多
基金Thanks to the anonymous reviewers for their insightful comments. This work was supported by National High Technology Research and Development Plan of China ("863" plan)(2012AA012600, 2012AA01A402, 2012AA01A401, 2011AA010702 and 2010AA012505) the National Natural Science Foundation of China (Grant Nos. 60933005 and 91124002)+1 种基金 the National Key Technology Research and Development Program of China (2012BAH38B04 and 2012BAH38B06) National 242 Information Security Program of China (2011A010).
文摘Abstract NoSQL databases are famed for the characteristics of high scalability, high availability, and high faulttolerance. So NoSQL databases are used in a lot of applications. The data partitioning strategy and fragment allocation strategy directly affect NoSQL database systems' performance. The data partition strategy of large, global databases is performed by horizontally, vertically partitioning or combination of both. In the general way the system scatters the related fragments as possible to improve operations' parallel degree. But the operations are usually not very complicated in some applications, and an operation may access to more than one fragment. At the same time, those fragments which have to be accessed by an operation may interact with each other. The general allocation strategies will increase system's communication cost during operations execution over sites. In order to improve those applications' performance and enable NoSQL database systems to work efficiently, these applications' fragments have to be allocated in a reasonable way that can reduce the communication cost i.e., to minimize the total volume of data transmitted during operations execution over sites. A strategy of clustering fragments based onhypergraph is proposed, which can cluster fragments which were accessed together in most operations to the same cluster. The method uses a weighted hypergraph to represent the fragments' access pattem of operations. A hypergraph partitioning algorithm is used to cluster fragments in our strategy. This method can reduce the amount of sites that an operation has to span. So it can reduce the communication cost over sites. Experimental results confirm that the proposed technique will effectively contribute in solving fragments re-allocation problem in a specific application environment of NoSQL database system.
基金Project supported by the National Natural Science Foundation of China(Nos.60933005 and 91124002)the National High-Tech R&D Program(863)of China(Nos.2010AA012505,2011AA010702,2012AA01A401,and 2012AA01A402)+1 种基金the National 242 Foundation(No.2011A010)the National Technology Support Foundation(Nos.2012BAH38B04 and 2012BAH38B06)
文摘Cloud computing is deemed the next-generation information technology(IT) platform, in which a data center is crucial for providing a large amount of computing and storage resources for various service applications with high quality guaranteed. However, cloud users no longer possess their data in a local data storage infrastructure,which would result in auditing for the integrity of outsourced data being a challenging problem, especially for users with constrained computing resources. Therefore, how to help the users complete the verification of the integrity of the outsourced data has become a key issue. Public verification is a critical technique to solve this problem, from which the users can resort to a third-party auditor(TPA) to check the integrity of outsourced data. Moreover,an identity-based(ID-based) public key cryptosystem would be an efficient key management scheme for certificatebased public key setting. In this paper, we combine ID-based aggregate signature and public verification to construct the protocol of provable data integrity. With the proposed mechanism, the TPA not only verifies the integrity of outsourced data on behalf of cloud users, but also alleviates the burden of checking tasks with the help of users' identity. Compared to previous research, the proposed scheme greatly reduces the time of auditing a single task on the TPA side. Security analysis and performance evaluation results show the high efficiency and security of the proposed scheme.
基金supported by the National Basic Research Program (973) of China (No. 2011CB302601)the National Natural Science Foundation of China (No. 90818028)the National High-Tech R&D Program (863) of China (No. 2007AA010301)
文摘Network virtualization is recognized as an effective way to overcome the ossification of the Internet. However, the virtual network mapping problem (VNMP) is a critical challenge, focusing on how to map the virtual networks to the substrate network with efficient utilization of infrastructure resources. The problem can be divided into two phases: node mapping phase and link mapping phase. In the node mapping phase, the existing algorithms usually map those virtual nodes with a complete greedy strategy, without considering the topology among these virtual nodes, resulting in too long substrate paths (with multiple hops). Addressing this problem, we propose a topology awareness mapping algorithm, which considers the topology among these virtual nodes. In the link mapping phase, the new algorithm adopts the k-shortest path algorithm. Simulation results show that the new algorithm greatly increases the long-term average revenue, the acceptance ratio, and the long-term revenue-to-cost ratio (R/C).
基金supported by the National Natural Science Foundation of China (Grant Nos. 11672158, and 11172154)the National Key Basic Research and Development Program (Grant No. 2014CB744100)the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase)
文摘In order to simulate multiscale problems such as turbulent flows effectively, the high-order accurate reconstruction based on minimized dispersion and controllable dissipation(MDCD) is implemented in the second-order accurate gas-kinetic scheme(GKS) to improve the accuracy and resolution. MDCD is firstly extended to non-uniform grids through the modification of dissipation and dispersion coefficients for uniform grids based on the local stretch ratio. Remarkable improvements in accuracy and resolution are achieved on general grids. Then a new scheme, MDCD-GKS is constructed, with the help of MDCD reconstruction, not only for conservative variables, but also for their gradients. MDCD-GKS shows good accuracy and efficiency in typical numerical tests.MDCD-GKS is also coupled with the improved delayed detached-eddy simulation(IDDES) hybrid model and applied in the fine simulation of turbulent flow around a cylinder, and the prediction is in good agreement with experiments when using the relatively coarse grid. The high accuracy and resolution of the developed GKS guarantee its high efficiency in practical applications.