For real-time processing of ultra-wide bandwidth low-frequency pulsar baseband data,we designed and implemented an ultra-wide bandwidth low-frequency pulsar data processing pipeline(UWLPIPE)based on the shared ringbuf...For real-time processing of ultra-wide bandwidth low-frequency pulsar baseband data,we designed and implemented an ultra-wide bandwidth low-frequency pulsar data processing pipeline(UWLPIPE)based on the shared ringbuffer and GPU parallel technology.UWLPIPE runs on the GPU cluster and can simultaneously receive multiple 128 MHz dual-polarization VDIF data packets preprocessed by the front-end FPGA.After aligning the dual-polarization data,multiple 128M subband data are packaged into PSRDADA baseband data or multi-channel coherent dispersion filterbank data,and multiple subband filterbank data can be spliced into wideband data after time alignment.We used the Nanshan 26 m radio telescope with the L-band receiver at964~1732 MHz to observe multiple pulsars.Finally,we processed the data using DSPSR software,and the results showed that each subband could correctly fold out the pulse profile,and the wideband pulse profile accumulated by multiple subbands could be correctly aligned.展开更多
To address the problem of real-time processing of ultra-wide bandwidth pulsar baseband data,we designed and implemented a pulsar baseband data processing algorithm(PSRDP)based on GPU parallel computing technology.PSRD...To address the problem of real-time processing of ultra-wide bandwidth pulsar baseband data,we designed and implemented a pulsar baseband data processing algorithm(PSRDP)based on GPU parallel computing technology.PSRDP can perform operations such as baseband data unpacking,channel separation,coherent dedispersion,Stokes detection,phase and folding period prediction,and folding integration in GPU clusters.We tested the algorithm using the J0437-4715 pulsar baseband data generated by the CASPSR and Medusa backends of the Parkes,and the J0332+5434 pulsar baseband data generated by the self-developed backend of the Nan Shan Radio Telescope.We obtained the pulse profiles of each baseband data.Through experimental analysis,we have found that the pulse profiles generated by the PSRDP algorithm in this paper are essentially consistent with the processing results of Digital Signal Processing Software for Pulsar Astronomy(DSPSR),which verified the effectiveness of the PSRDP algorithm.Furthermore,using the same baseband data,we compared the processing speed of PSRDP with DSPSR,and the results showed that PSRDP was not slower than DSPSR in terms of speed.The theoretical and technical experience gained from the PSRDP algorithm research in this article lays a technical foundation for the real-time processing of QTT(Qi Tai radio Telescope)ultra-wide bandwidth pulsar baseband data.展开更多
We have carried out the Galactic Plane Pulsar Snapshot(GPPS)survey by using the Five-hundred-meter Aperture Spherical radio Telescope(FAST),the most sensitive systematic pulsar survey in the Galactic plane.In addition...We have carried out the Galactic Plane Pulsar Snapshot(GPPS)survey by using the Five-hundred-meter Aperture Spherical radio Telescope(FAST),the most sensitive systematic pulsar survey in the Galactic plane.In addition to more than 500 pulsars already discovered through normal periodical search,we report here the discovery of 76 new transient radio sources with sporadic strong pulses,detected by using the newly developed module for a sensitive single-pulse search.Their small DM values suggest that they all are Galactic rotating radio transients(RRATs).They show different properties in the follow-up observations.More radio pulses have been detected from 26 transient radio sources but no periods can be found due to a limited small number of pulses from all FAST observations.The followup observations show that 16 transient sources are newly identified as being the prototypes of RRATs with a period already determined from more detected sporadic pulses,and 10 sources are extremely nulling pulsars,and 24 sources are weak pulsars with sparse strong pulses.On the other hand,48 previously known RRATs have been detected by the FAST,either during verification observations for the GPPS survey or through targeted observations of applied normal FAST projects.Except for one RRAT with four pulses detected in a session of 5-minute observation and four RRATs with only one pulse detected in a session,sensitive FAST observations reveal that 43 RRATs are just generally weak pulsars with sporadic strong pulses or simply very nulling pulsars,so that the previously known RRATs always have an extreme emission state together with a normal hardly detectable weak emission state.This is echoed by the two normal pulsars J1938+2213 and J1946+1449 with occasional brightening pulses.Though strong pulses of RRATs are very outstanding in the energy distribution,their polarization angle variations follow the polarization angle curve of the averaged normal pulse profile,suggesting that the predominant sparse pulses of RRATs are emitted in the same region with the same geometry as normal weak pulsars.展开更多
Black widows(BWs)are millisecond pulsars ablating their companion stars.The out-flowing material from the companion can block the radio emission of the pulsar,resulting in eclipses.In this paper,we construct a model f...Black widows(BWs)are millisecond pulsars ablating their companion stars.The out-flowing material from the companion can block the radio emission of the pulsar,resulting in eclipses.In this paper,we construct a model for the radio eclipse by calculating the geometry of the bow shock between the winds of the pulsar and companion,where the shock shapes the eclipsing medium but had not been described in detail in previous works.The model is further used to explain the variations of the flux density and dispersion measure of three BW pulsars(i.e.,PSR B1957+20,J2055+3829,and J2051-0827)detected by the Five-hundred-meter Aperture Spherical radio Telescope.Consequently,we constrained the parameters of the three BW systems such as the inclination angles and true anomalies of the observer as well as the mass-loss rates and wind velocity of the companion stars.With the help of these constraints,it is expected that magnetic fields of companion stars and even masses of pulsars could further be determined as some extra observation can be achieved in the future.展开更多
When the pulsar signal propagates in the interstellar medium(ISM),the high frequency and low frequency components of the signal reach the radio telescope with a certain delay.Therefore,the pulsar signal will appear en...When the pulsar signal propagates in the interstellar medium(ISM),the high frequency and low frequency components of the signal reach the radio telescope with a certain delay.Therefore,the pulsar signal will appear energy dispersion,which will broaden the pulse profile,decrease the signal to noise ratio,and even lead to the disappearance of the pulse signal.In this paper,we analyze the sampling,polarization and arrangement of baseband data based on the coherent dedispersion algorithm for the problem of pulsar baseband data dedispersion.We systematically study the coherent dedispersion data processing procedure,and test the pulse profile changes under different FFT block sizes.An optimal selection strategy of FFT block sizes is proposed for reducing the operation time and obtaining a better pulse profile.We propose two methods,one is the generation of ISM transfer function,the other is the pulsar period and phase prediction method at a certain time,and discuss integral and folding strategies.We test the algorithm based on the baseband data of CASPSR and Medusa terminals observed by the Parkes 64 m radio telescope,and analyze the reading and processing methods of baseband data of different terminals.The experimental results show that the phase and amplitude information of the pulse profile processed by our algorithm is basically consistent with the results obtained by DSPSR.展开更多
We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polar...We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polarization profile of this millisecond pulsar(MSP) using the Five-hundred-meter Aperture Spherical radio Telescope(FAST), the Green Bank Telescope(GBT), and the Parkes Telescope. For the first time from such a system, an oscillatory polarization angle change was observed from a particular eclipse egress with partial depolarization, indicating 10-milliGauss-level reciprocating magnetic fields oscillating in a length scale of 5 ×10^(3)km(assuming an orbital inclination angle of 90°) outside the companion's magnetosphere. The dispersion measure variation observed during the ingresses and egresses shows the rapid raising of the electron density in the shock boundary between the companion's magnetosphere and the surrounding pulsar wind. We suggest that the observed oscillatory magnetic fields originate from the pulsar wind outside the companion's magnetosphere.展开更多
In this paper,we presented the 23.3 yr of pulsar timing results of PSR J1456-6413 based on the observations of Parkes 64 m radio telescope.We detected two new glitches at MJD 57093(3)and 59060(12)and confirmed its fir...In this paper,we presented the 23.3 yr of pulsar timing results of PSR J1456-6413 based on the observations of Parkes 64 m radio telescope.We detected two new glitches at MJD 57093(3)and 59060(12)and confirmed its first glitch at MJD 54554(10).The relative sizes(Δν/ν)of these two new glitches are 0.9×10^(-9)and 1.16×10^(-9),respectively.Using the“Cholesky”timing analysis method,we have determined its position,proper motion,and two-dimensional transverse velocities from the data segments before and after the second glitch,respectively.Furthermore,we detected exponential recovery behavior after the first glitch,with a recovery timescale of approximately 200 days and a corresponding exponential recovery factor Q of approximately 0.15(2),while no exponential recovery was detected for the other two glitches.More interestingly,we found that the leading component of the integral pulse profile after the second glitch became stronger,while the main component became weaker.Our results will expand the sample of pulsars with magnetosphere fluctuation triggered by the glitch event.展开更多
Discovery of pulsars is one of the main goals for large radio telescopes.The Five-hundredmeter Aperture Spherical radio Telescope(FAST),that incorporates an L-band 19-beam receiver with a system temperature of about 2...Discovery of pulsars is one of the main goals for large radio telescopes.The Five-hundredmeter Aperture Spherical radio Telescope(FAST),that incorporates an L-band 19-beam receiver with a system temperature of about 20 K,is the most sensitive radio telescope utilized for discovering pulsars.We designed the snapshot observation mode for a FAST key science project,the Galactic Plane Pulsar Snapshot(GPPS)survey,in which every four nearby pointings can observe a cover of a sky patch of 0.1575 square degrees through beam-switching of the L-band 19-beam receiver.The integration time for each pointing is 300 seconds so that the GPPS observations for a cover can be made in 21 minutes.The goal of the GPPS survey is to discover pulsars within the Galactic latitude of±10∘from the Galactic plane,and the highest priority is given to the inner Galaxy within±5∘.Up to now,the GPPS survey has discovered 201 pulsars,including currently the faintest pulsars which cannot be detected by other telescopes,pulsars with extremely high dispersion measures(DMs)which challenge the currently widely used models for the Galactic electron density distribution,pulsars coincident with supernova remnants,40 millisecond pulsars,16 binary pulsars,some nulling and mode-changing pulsars and rotating radio transients(RRATs).The follow-up observations for confirmation of new pulsars have polarization-signals recorded for polarization profiles of the pulsars.Re-detection of previously known pulsars in the survey data also leads to significant improvements in parameters for 64 pulsars.The GPPS survey discoveries are published and will be updated at http://zmtt.bao.ac.cn/GPPS/.展开更多
We present Arecibo 327 MHz confirmation and follow-up studies of seven new pulsars discovered by the Five-hundred-meter Aperture Spherical radio Telescope(FAST).These pulsars are discovered in a pilot program of the C...We present Arecibo 327 MHz confirmation and follow-up studies of seven new pulsars discovered by the Five-hundred-meter Aperture Spherical radio Telescope(FAST).These pulsars are discovered in a pilot program of the Commensal Radio Astronomy FAST Survey(CRAFTS)with the ultra-widebandwidth commissioning receiver.Five of them are normal pulsars and two are extreme nulling slow pulsars.PSR J2111+2132’s dispersion measure(DM:78.5 pc cm^(-3))is above the upper limits of the two Galactic free electron density models,NE2001 and YMW16,and PSR J2057+2133’s position is out of the Scutum-Crux Arm,making them uniquely useful for improving the Galactic free electron density model in their directions.We present a detailed single pulse analysis for the slow nulling pulsars.We show evidence that PSR J2323+1214’s main pulse component follows a non-Poisson distribution and marginal evidence for a sub-pulse-drift or recurrent period of 32.3±0.4 rotations from PSR J0539+0013.We discuss the implication of our finding to the pulsar radiation mechanism.展开更多
PSR J0742-2822 is known for its quasi-periodic changes in the observed pulse profile and spindown rate.In this paper,we analyzed 13 years of timing data obtained with the Nanshan 25-m radio telescope and the Parkes 64...PSR J0742-2822 is known for its quasi-periodic changes in the observed pulse profile and spindown rate.In this paper,we analyzed 13 years of timing data obtained with the Nanshan 25-m radio telescope and the Parkes 64-m radio telescope.We found that the average values of the spin-down rate((v))of this pulsar changed in four different states.We investigated the correlation between v and W50,and ascertained that the correlation changed in different states.Moreover,not all the changes in states and correlation can be associated with glitch activities.We examined the long term evolution ofγ-ray flux(0.1-300 GeV)and the pulse profiles corresponding to the four different states using Fermi-LAT Pass8(P8 R3)data from 2008 August 5 to 2019 October 1.We did not detect a significant change inγ-ray flux or the pulse profile.Our results suggest that the connection between pulsar rotation and emission is more complex than previously reported for this pulsar.展开更多
Flux densities are basic observation parameters to describe pulsars.In the most updated pulsar catalog,24%of the listed radio pulsars have no flux density measurement at any frequency.Here,we report the first flux den...Flux densities are basic observation parameters to describe pulsars.In the most updated pulsar catalog,24%of the listed radio pulsars have no flux density measurement at any frequency.Here,we report the first flux density measurements,spectral indices,pulse profiles,and correlations of the spectral index with pulsar parameters for 19 pulsars employing the Ultra-Wideband Low receiver system installed on the Parkes radio telescope.The results for spectral indices of 17 pulsars are in the range between-0.6 and-3.10.The polarization profiles of thirteen pulsars are shown.There is a moderate correlation between the spectral index and spin frequency.For most pulsars detected,the signal-to-noise ratio of pulse profile is not high,so DM,Faraday rotation measure,and polarization cannot be determined precisely.Twenty-nine pulsars were not detected in our observations.We discuss the possible explanations for why these pulsars were not detected.展开更多
Fast radio bursts(FRBs) are extremely strong radio flares lasting several milliseconds,most of which come from unidentified objects at a cosmological distance.They can be apparently repeating or not.In this paper,we a...Fast radio bursts(FRBs) are extremely strong radio flares lasting several milliseconds,most of which come from unidentified objects at a cosmological distance.They can be apparently repeating or not.In this paper,we analyzed 18 repeaters and 12 non-repeating FRBs observed in the frequency bands of 400–800 MHz from Canadian Hydrogen Intensity Mapping Experiment(CHIME).We investigated the distributions of FRB isotropic-equivalent radio luminosity,considering the K correction.Statistically,the luminosity distribution can be better fitted by Gaussian form than by power-law.Based on the above results,together with the observed FRB event rate,pulse duration,and radio luminosity,FRB origin models are evaluated and constrained such that the gamma-ray bursts(GRBs) may be excluded for the non-repeaters while magnetars or neutron stars(NSs) emitting the supergiant pulses are preferred for the repeaters.We also found the necessity of a small FRB emission beaming solid angle(about 0.1 sr) from magnetars that should be considered,and/or the FRB association with soft gamma-ray repeaters(SGRs) may lie at a low probability of about 10%.Finally,we discussed the uncertainty of FRB luminosity caused by the estimation of the distance that is inferred by the simple relation between the redshift and dispersion measure(DM).展开更多
基金supported by the National Key R&D Program of China Nos.2021YFC2203502 and 2022YFF0711502the National Natural Science Foundation of China(NSFC)(12173077)+4 种基金the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095 and2023TSYCCX0112)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,grant No.PTYQ2022YZZD01China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘For real-time processing of ultra-wide bandwidth low-frequency pulsar baseband data,we designed and implemented an ultra-wide bandwidth low-frequency pulsar data processing pipeline(UWLPIPE)based on the shared ringbuffer and GPU parallel technology.UWLPIPE runs on the GPU cluster and can simultaneously receive multiple 128 MHz dual-polarization VDIF data packets preprocessed by the front-end FPGA.After aligning the dual-polarization data,multiple 128M subband data are packaged into PSRDADA baseband data or multi-channel coherent dispersion filterbank data,and multiple subband filterbank data can be spliced into wideband data after time alignment.We used the Nanshan 26 m radio telescope with the L-band receiver at964~1732 MHz to observe multiple pulsars.Finally,we processed the data using DSPSR software,and the results showed that each subband could correctly fold out the pulse profile,and the wideband pulse profile accumulated by multiple subbands could be correctly aligned.
基金supported by the National Key R&D Program of China Nos.2021YFC2203502 and 2022YFF0711502the National Natural Science Foundation of China(NSFC)(12173077 and 12003062)+5 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,grant No.PTYQ2022YZZD01China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘To address the problem of real-time processing of ultra-wide bandwidth pulsar baseband data,we designed and implemented a pulsar baseband data processing algorithm(PSRDP)based on GPU parallel computing technology.PSRDP can perform operations such as baseband data unpacking,channel separation,coherent dedispersion,Stokes detection,phase and folding period prediction,and folding integration in GPU clusters.We tested the algorithm using the J0437-4715 pulsar baseband data generated by the CASPSR and Medusa backends of the Parkes,and the J0332+5434 pulsar baseband data generated by the self-developed backend of the Nan Shan Radio Telescope.We obtained the pulse profiles of each baseband data.Through experimental analysis,we have found that the pulse profiles generated by the PSRDP algorithm in this paper are essentially consistent with the processing results of Digital Signal Processing Software for Pulsar Astronomy(DSPSR),which verified the effectiveness of the PSRDP algorithm.Furthermore,using the same baseband data,we compared the processing speed of PSRDP with DSPSR,and the results showed that PSRDP was not slower than DSPSR in terms of speed.The theoretical and technical experience gained from the PSRDP algorithm research in this article lays a technical foundation for the real-time processing of QTT(Qi Tai radio Telescope)ultra-wide bandwidth pulsar baseband data.
基金This project,as one of five key projects,is being carried out by using FAST,a Chinese national mega-science facility built and operated by the National Astronomical Observatories,Chinese Academy of Sciencessupported by the National Natural Science Foundation of China(NSFC,Nos.11988101 and 11833009)+5 种基金the Key Research Program of the Chinese Academy of Sciences(grant No.QYZDJ-SSWSLH021)supported by the Cultivation Project for the FAST scientific Payoff and Research Achievement of CAMS-CASsupported by NSFC No.12133004,partially supported by NSFC No.U1731120partially supported by the NSFC No.11873058,partially supported by NSFC No.U2031115partially supported by the National SKA program of China No.2020SKA0120200partially supported by the Guangzhou Science and Technology Project No.202102010466。
文摘We have carried out the Galactic Plane Pulsar Snapshot(GPPS)survey by using the Five-hundred-meter Aperture Spherical radio Telescope(FAST),the most sensitive systematic pulsar survey in the Galactic plane.In addition to more than 500 pulsars already discovered through normal periodical search,we report here the discovery of 76 new transient radio sources with sporadic strong pulses,detected by using the newly developed module for a sensitive single-pulse search.Their small DM values suggest that they all are Galactic rotating radio transients(RRATs).They show different properties in the follow-up observations.More radio pulses have been detected from 26 transient radio sources but no periods can be found due to a limited small number of pulses from all FAST observations.The followup observations show that 16 transient sources are newly identified as being the prototypes of RRATs with a period already determined from more detected sporadic pulses,and 10 sources are extremely nulling pulsars,and 24 sources are weak pulsars with sparse strong pulses.On the other hand,48 previously known RRATs have been detected by the FAST,either during verification observations for the GPPS survey or through targeted observations of applied normal FAST projects.Except for one RRAT with four pulses detected in a session of 5-minute observation and four RRATs with only one pulse detected in a session,sensitive FAST observations reveal that 43 RRATs are just generally weak pulsars with sporadic strong pulses or simply very nulling pulsars,so that the previously known RRATs always have an extreme emission state together with a normal hardly detectable weak emission state.This is echoed by the two normal pulsars J1938+2213 and J1946+1449 with occasional brightening pulses.Though strong pulses of RRATs are very outstanding in the energy distribution,their polarization angle variations follow the polarization angle curve of the averaged normal pulse profile,suggesting that the predominant sparse pulses of RRATs are emitted in the same region with the same geometry as normal weak pulsars.
基金supported by the National SKA program of China(2020SKA0120300)the National Key R&D Program of China(2021YFA0718500)+2 种基金the National Natural Science Foundation of China(grant Nos.11833003,12033001)the China Postdoctoral Science Foundation(No.2023T160410)the Opening Foundation of Xinjiang Key Laboratory(No.2021D04016)。
文摘Black widows(BWs)are millisecond pulsars ablating their companion stars.The out-flowing material from the companion can block the radio emission of the pulsar,resulting in eclipses.In this paper,we construct a model for the radio eclipse by calculating the geometry of the bow shock between the winds of the pulsar and companion,where the shock shapes the eclipsing medium but had not been described in detail in previous works.The model is further used to explain the variations of the flux density and dispersion measure of three BW pulsars(i.e.,PSR B1957+20,J2055+3829,and J2051-0827)detected by the Five-hundred-meter Aperture Spherical radio Telescope.Consequently,we constrained the parameters of the three BW systems such as the inclination angles and true anomalies of the observer as well as the mass-loss rates and wind velocity of the companion stars.With the help of these constraints,it is expected that magnetic fields of companion stars and even masses of pulsars could further be determined as some extra observation can be achieved in the future.
基金supported by National Key R&D Program of China Nos.2021YFC2203502 and 2022YFF0711502the National Natural Science Foundation of China(NSFC)(12173077 and 12003062)+6 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2022D14020)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,Grant No.PTYQ2022YZZD01the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)supported by China National Astronomical Data Center(NADC)supported by Astronomical Big Data Joint Research Center。
文摘When the pulsar signal propagates in the interstellar medium(ISM),the high frequency and low frequency components of the signal reach the radio telescope with a certain delay.Therefore,the pulsar signal will appear energy dispersion,which will broaden the pulse profile,decrease the signal to noise ratio,and even lead to the disappearance of the pulse signal.In this paper,we analyze the sampling,polarization and arrangement of baseband data based on the coherent dedispersion algorithm for the problem of pulsar baseband data dedispersion.We systematically study the coherent dedispersion data processing procedure,and test the pulse profile changes under different FFT block sizes.An optimal selection strategy of FFT block sizes is proposed for reducing the operation time and obtaining a better pulse profile.We propose two methods,one is the generation of ISM transfer function,the other is the pulsar period and phase prediction method at a certain time,and discuss integral and folding strategies.We test the algorithm based on the baseband data of CASPSR and Medusa terminals observed by the Parkes 64 m radio telescope,and analyze the reading and processing methods of baseband data of different terminals.The experimental results show that the phase and amplitude information of the pulse profile processed by our algorithm is basically consistent with the results obtained by DSPSR.
基金The Parkes Radio Telescope (Murriyang) is part of the Australia Telescope National Facility, which is funded by the Australian Government for operation as a National Facility managed by CSIROsupported by the National Natural Science Foundation of China (NSFC) grant Nos. 12041303, 12041304, 11873067, 12133004, 12203045, 12203070, 12203072, 12103013, U2031117 and T2241020+11 种基金the CAS-MPG LEGACY project and the National SKA Program of China No. 2020SKA0120200the Foundation of Science and Technology of Guizhou Province No. ((2021)023)the Foundation of Guizhou Provincial Education Department (No.KY(2021)303)the National Key Research and Development Program of China Nos. 2022YFC2205202 and 2022YFC2205203the Major Science and Technology Program of Xinjiang Uygur Autonomous Region Nos. 2022A03013-1, 2022A03013-3 and 2022A03013-4the National Key Research and Development Program of China No. 2022YFC2205203the 2021 project Xinjiang Uygur autonomous region of China for Tianshan elites and the Youth Innovation Promotion Association of CAS under No. 2023069support from the Youth Innovation Promotion Association CAS (id. 2021055)CAS Project for Young Scientists in Basic Research (grant YSBR-006)the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASsupport from Zhejiang Provincial Natural Science Foundation of China under grant No. LY23A030001supported by the NSF Physics Frontiers Center award number 2020265。
文摘We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polarization profile of this millisecond pulsar(MSP) using the Five-hundred-meter Aperture Spherical radio Telescope(FAST), the Green Bank Telescope(GBT), and the Parkes Telescope. For the first time from such a system, an oscillatory polarization angle change was observed from a particular eclipse egress with partial depolarization, indicating 10-milliGauss-level reciprocating magnetic fields oscillating in a length scale of 5 ×10^(3)km(assuming an orbital inclination angle of 90°) outside the companion's magnetosphere. The dispersion measure variation observed during the ingresses and egresses shows the rapid raising of the electron density in the shock boundary between the companion's magnetosphere and the surrounding pulsar wind. We suggest that the observed oscillatory magnetic fields originate from the pulsar wind outside the companion's magnetosphere.
基金supported by the National SKA Program of China(Nos.2022SKA0130100,2020SKA0120100 and 2022SKA0130104)Guizhou Province Science and Technology Foundation(No.ZK[2022]304)+9 种基金the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(Nos.2022A03013-2 and 2022A03013-4)the Scientific Research Project of the Guizhou Provincial Education(Nos.KY[2022]132,KY[2022]123 and KY[2022]137)the National Natural Science Foundation of China(Nos.11873080,U1731238,11565010,12103013,U1838109,U1831120,12273008 and 12103013)the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences(No.U1931101)the Foundation of Guizhou Provincial Education Department(Nos.KY(2020)003 and KY(2021)303)the Guizhou Province Science and Technology Support Program(No.[2023]General 333)the 2021 project Xinjiang Uygur autonomous region of China for Tianshan elites,the Key Laboratory of Xinjiang Uygur Autonomous Region No.2020D04049the Academic New Seeding Fund Project of Guizhou Normal University(No.[2022]B18)the CAS Jianzhihua projectThe Parkes radio telescope is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO。
文摘In this paper,we presented the 23.3 yr of pulsar timing results of PSR J1456-6413 based on the observations of Parkes 64 m radio telescope.We detected two new glitches at MJD 57093(3)and 59060(12)and confirmed its first glitch at MJD 54554(10).The relative sizes(Δν/ν)of these two new glitches are 0.9×10^(-9)and 1.16×10^(-9),respectively.Using the“Cholesky”timing analysis method,we have determined its position,proper motion,and two-dimensional transverse velocities from the data segments before and after the second glitch,respectively.Furthermore,we detected exponential recovery behavior after the first glitch,with a recovery timescale of approximately 200 days and a corresponding exponential recovery factor Q of approximately 0.15(2),while no exponential recovery was detected for the other two glitches.More interestingly,we found that the leading component of the integral pulse profile after the second glitch became stronger,while the main component became weaker.Our results will expand the sample of pulsars with magnetosphere fluctuation triggered by the glitch event.
基金This project,as one of five key projects,is being carried out by using FAST,a Chinese national mega-science facility built and operated by the National Astronomical Observatories,Chinese Academy of Sciences.J.L.Han is supported by the National Natural Science Foundation of China(NSFC,Nos.11988101 and 11833009)the Key Research Program of the Chinese Academy of Sciences(Grant No.QYZDJ-SSW-SLH021)+4 种基金C.Wang is partially supported by NSFC No.U1731120X.Y.Gao is partially supported by NSFC No.U1831103P.F.Wang is partially supported by the NSFC No.11873058 and the National SKA program of China No.2020SKA0120200.Jun Xu is partially supported by NSFC No.U2031115H.G.Wang is partially supported by the National SKA program of China(No.2020SKA0120100)R.Yuen is partly supported by Xiaofeng Yang's Xinjiang Tianchi Bairen project and CAS Pioneer Hundred Talents Program.L.G.Hou thanks the support from the Youth Innovation Promotion Association CAS.
文摘Discovery of pulsars is one of the main goals for large radio telescopes.The Five-hundredmeter Aperture Spherical radio Telescope(FAST),that incorporates an L-band 19-beam receiver with a system temperature of about 20 K,is the most sensitive radio telescope utilized for discovering pulsars.We designed the snapshot observation mode for a FAST key science project,the Galactic Plane Pulsar Snapshot(GPPS)survey,in which every four nearby pointings can observe a cover of a sky patch of 0.1575 square degrees through beam-switching of the L-band 19-beam receiver.The integration time for each pointing is 300 seconds so that the GPPS observations for a cover can be made in 21 minutes.The goal of the GPPS survey is to discover pulsars within the Galactic latitude of±10∘from the Galactic plane,and the highest priority is given to the inner Galaxy within±5∘.Up to now,the GPPS survey has discovered 201 pulsars,including currently the faintest pulsars which cannot be detected by other telescopes,pulsars with extremely high dispersion measures(DMs)which challenge the currently widely used models for the Galactic electron density distribution,pulsars coincident with supernova remnants,40 millisecond pulsars,16 binary pulsars,some nulling and mode-changing pulsars and rotating radio transients(RRATs).The follow-up observations for confirmation of new pulsars have polarization-signals recorded for polarization profiles of the pulsars.Re-detection of previously known pulsars in the survey data also leads to significant improvements in parameters for 64 pulsars.The GPPS survey discoveries are published and will be updated at http://zmtt.bao.ac.cn/GPPS/.
基金supported by the National Natural Science Foundation of China(Grant Nos.11988101,U2031117,11725313,12041303,11873067,U1831131 and U1631132)the China Scholarship Council(No.201704910686)+4 种基金the CASMPG LEGACY projectthe Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23000000)the National SKA Program of China(No.2020SKA0120200)the Foundation of Guizhou Provincial Education Department(No.KY(2020)003)the Cultivation Project for FAST Scientific Payoff and the Research Achievement of CAMS-CAS。
文摘We present Arecibo 327 MHz confirmation and follow-up studies of seven new pulsars discovered by the Five-hundred-meter Aperture Spherical radio Telescope(FAST).These pulsars are discovered in a pilot program of the Commensal Radio Astronomy FAST Survey(CRAFTS)with the ultra-widebandwidth commissioning receiver.Five of them are normal pulsars and two are extreme nulling slow pulsars.PSR J2111+2132’s dispersion measure(DM:78.5 pc cm^(-3))is above the upper limits of the two Galactic free electron density models,NE2001 and YMW16,and PSR J2057+2133’s position is out of the Scutum-Crux Arm,making them uniquely useful for improving the Galactic free electron density model in their directions.We present a detailed single pulse analysis for the slow nulling pulsars.We show evidence that PSR J2323+1214’s main pulse component follows a non-Poisson distribution and marginal evidence for a sub-pulse-drift or recurrent period of 32.3±0.4 rotations from PSR J0539+0013.We discuss the implication of our finding to the pulsar radiation mechanism.
基金supported by the National Key Research and Development Program of China(2016YFA0400804,2017YFA0402602,2018YFA0404603 and 2018YFA0404703)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administered by the Chinese Academy of Sciences(CAS),the National Natural Science Foundation of China(Grant Nos.11873080,U1831102,U1731238,U1938109,U1838104,11873040,11573010,11661161010,U1631103 and U1838102)+4 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences,the CAS“Light of West China”Program(Nos.2018-XBQNXZ-B-023,2018-XBQNXZ-B-025 and 2016-QNXZ-B-24)the Tianshan Youth Program No.2018Q039the Open Project Program of the Key Laboratory of FAST,NAOC,Chinese Academy of Sciences,the China Postdoctoral Science Foundation grant(2019M650847)the 2016 and 2018 Project of Xinjiang Uygur Autonomous Region of China for Flexibly Fetching in Upscale Talents and the Science and Technology Fund of Guizhou Province(Grant Nos.(2016)–4008 and(2017)5726–37)part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO。
文摘PSR J0742-2822 is known for its quasi-periodic changes in the observed pulse profile and spindown rate.In this paper,we analyzed 13 years of timing data obtained with the Nanshan 25-m radio telescope and the Parkes 64-m radio telescope.We found that the average values of the spin-down rate((v))of this pulsar changed in four different states.We investigated the correlation between v and W50,and ascertained that the correlation changed in different states.Moreover,not all the changes in states and correlation can be associated with glitch activities.We examined the long term evolution ofγ-ray flux(0.1-300 GeV)and the pulse profiles corresponding to the four different states using Fermi-LAT Pass8(P8 R3)data from 2008 August 5 to 2019 October 1.We did not detect a significant change inγ-ray flux or the pulse profile.Our results suggest that the connection between pulsar rotation and emission is more complex than previously reported for this pulsar.
基金the National Natural Science Foundation of China(Grant No.NSFC12041304)National SKA Program of China(No.2020SKA0120100)+3 种基金Youth Innovation Promotion Association of Chinese Academy of SciencesNational Key Research and Development Program of China(No.2017YFA0402602)the CAS Jianzhihua projectHeaven Lake Hundred-Talent Program of Xinjiang Uygur Autonomous Region of China。
文摘Flux densities are basic observation parameters to describe pulsars.In the most updated pulsar catalog,24%of the listed radio pulsars have no flux density measurement at any frequency.Here,we report the first flux density measurements,spectral indices,pulse profiles,and correlations of the spectral index with pulsar parameters for 19 pulsars employing the Ultra-Wideband Low receiver system installed on the Parkes radio telescope.The results for spectral indices of 17 pulsars are in the range between-0.6 and-3.10.The polarization profiles of thirteen pulsars are shown.There is a moderate correlation between the spectral index and spin frequency.For most pulsars detected,the signal-to-noise ratio of pulse profile is not high,so DM,Faraday rotation measure,and polarization cannot be determined precisely.Twenty-nine pulsars were not detected in our observations.We discuss the possible explanations for why these pulsars were not detected.
基金supported by the National Natural Science Foundation of China (Grant Nos.11988101,U1938117,U1731238,11703003 and 11725313)the International Partnership Program of Chinese Academy of Sciences (Grant No.114A11KYSB20160008)+1 种基金the National Key R&D Program of China (No.2016YFA0400702)the Guizhou Provincial Science and Technology Foundation (Grant No.[2020]1Y019)。
文摘Fast radio bursts(FRBs) are extremely strong radio flares lasting several milliseconds,most of which come from unidentified objects at a cosmological distance.They can be apparently repeating or not.In this paper,we analyzed 18 repeaters and 12 non-repeating FRBs observed in the frequency bands of 400–800 MHz from Canadian Hydrogen Intensity Mapping Experiment(CHIME).We investigated the distributions of FRB isotropic-equivalent radio luminosity,considering the K correction.Statistically,the luminosity distribution can be better fitted by Gaussian form than by power-law.Based on the above results,together with the observed FRB event rate,pulse duration,and radio luminosity,FRB origin models are evaluated and constrained such that the gamma-ray bursts(GRBs) may be excluded for the non-repeaters while magnetars or neutron stars(NSs) emitting the supergiant pulses are preferred for the repeaters.We also found the necessity of a small FRB emission beaming solid angle(about 0.1 sr) from magnetars that should be considered,and/or the FRB association with soft gamma-ray repeaters(SGRs) may lie at a low probability of about 10%.Finally,we discussed the uncertainty of FRB luminosity caused by the estimation of the distance that is inferred by the simple relation between the redshift and dispersion measure(DM).