We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This e...We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This extends the work of Duan et al.(2013), in which the case of strong angular singularity is considered, to the case of weak angular singularity.展开更多
In this paper,the authors study the 1 D steady Boltzmann flow in a channel.The walls of the channel are assumed to have vanishing velocity and given temperaturesθ0andθ1.This problem was studied by Esposito-Lebowitz-...In this paper,the authors study the 1 D steady Boltzmann flow in a channel.The walls of the channel are assumed to have vanishing velocity and given temperaturesθ0andθ1.This problem was studied by Esposito-Lebowitz-Marra(1994,1995)where they showed that the solution tends to a local Maxwellian with parameters satisfying the compressible Navier-Stokes equation with no-slip boundary condition.However,a lot of numerical experiments reveal that the fluid layer does not entirely stick to the boundary.In the regime where the Knudsen number is reasonably small,the slip phenomenon is significant near the boundary.Thus,they revisit this problem by taking into account the slip boundary conditions.Following the lines of[Coron,F.,Derivation of slip boundary conditions for the Navier-Stokes system from the Boltzmann equation,J.Stat.Phys.,54(3-4),1989,829-857],the authors will first give a formal asymptotic analysis to see that the flow governed by the Boltzmann equation is accurately approximated by a superposition of a steady CNS equation with a temperature jump condition and two Knudsen layers located at end points.Then they will establish a uniform L∞estimate on the remainder and derive the slip boundary condition for compressible Navier-Stokes equations rigorously.展开更多
The smoothness of the solutions to the full Landau equation for Fermi-Dirac particles is investigated.It is shown that the classical solutions near equilibrium to the Landau-Fermi-Dirac equation have a regularizing ef...The smoothness of the solutions to the full Landau equation for Fermi-Dirac particles is investigated.It is shown that the classical solutions near equilibrium to the Landau-Fermi-Dirac equation have a regularizing effects in all variables (time,space and velocity),that is,they become immediately smooth with respect to all variables.展开更多
基金supported by the Fundamental Research Funds for the Central UniversitiesNational Natural Science Foundation of China(Grant Nos.11601169,11471142,11271160,11571063,11731008 and 11671309)
文摘We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This extends the work of Duan et al.(2013), in which the case of strong angular singularity is considered, to the case of weak angular singularity.
基金supported by the National Natural Science Foundation of China(Nos.11971201,11731008)the General Research Fund from RGC of Hong Kong(No.14301719)+1 种基金a Direct Grant from CUHK(No.4053397)the Fundamental Research Funds for the Central Universities and a fellowship award from the Research Grants Council of the Hong Kong Special Administrative Region,China(No.SRF2021-1S01)。
文摘In this paper,the authors study the 1 D steady Boltzmann flow in a channel.The walls of the channel are assumed to have vanishing velocity and given temperaturesθ0andθ1.This problem was studied by Esposito-Lebowitz-Marra(1994,1995)where they showed that the solution tends to a local Maxwellian with parameters satisfying the compressible Navier-Stokes equation with no-slip boundary condition.However,a lot of numerical experiments reveal that the fluid layer does not entirely stick to the boundary.In the regime where the Knudsen number is reasonably small,the slip phenomenon is significant near the boundary.Thus,they revisit this problem by taking into account the slip boundary conditions.Following the lines of[Coron,F.,Derivation of slip boundary conditions for the Navier-Stokes system from the Boltzmann equation,J.Stat.Phys.,54(3-4),1989,829-857],the authors will first give a formal asymptotic analysis to see that the flow governed by the Boltzmann equation is accurately approximated by a superposition of a steady CNS equation with a temperature jump condition and two Knudsen layers located at end points.Then they will establish a uniform L∞estimate on the remainder and derive the slip boundary condition for compressible Navier-Stokes equations rigorously.
基金Project supported by the National Natural Science Foundation of China(No.11101188)
文摘The smoothness of the solutions to the full Landau equation for Fermi-Dirac particles is investigated.It is shown that the classical solutions near equilibrium to the Landau-Fermi-Dirac equation have a regularizing effects in all variables (time,space and velocity),that is,they become immediately smooth with respect to all variables.