Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety ...Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety hazard induced by the formation of high-modulue Mg dendrites under a high current density(10 mA cm^(-1))was still revealed in recent years.It has forced researchers to re-examine the safety of RMBs.In this review,the intrinsic safety factors of key components in RMBs,such as uneven plating,pitting and flammability of Mg anode,heat release and crystalline water decomposition of cathode,strong corrosion,low oxidition stability and flammability of electrolytes,and soforth,are systematacially summarized.Their origins,formation mechanisms,and possible safety hazards are deeply discussed.To develop high-performance Mg anode,current strategies including designing artificial SEI,three-dimensional substrates,and Mg alloys are summarized.For practical electrolytes,the configurations of boron-centered anions and simple Mg salts and the functionalized solvent with high boiling point and low flammability are suggested to comprehensively design.In addition,the future study should more focus on the investigation on the thermal runaway and decomposition of cathode materials and separa-tors.This review aims to provide fundamental insights into the relationship between electrochemistry and safety,further promoting the sustainable development of RMBs.展开更多
High-performance and low-cost sodium-ion capacitors(SICs)show tremendous potential applications in public transport and grid energy storage.However,conventional SICs are limited by the low specific capacity,poor rate ...High-performance and low-cost sodium-ion capacitors(SICs)show tremendous potential applications in public transport and grid energy storage.However,conventional SICs are limited by the low specific capacity,poor rate capability,and low initial coulombic efficiency(ICE)of anode materials.Herein,we report layered iron vanadate(Fe5V15O39(OH)9·9H2O)ultrathin nanosheets with a thickness of~2.2 nm(FeVO UNSs)as a novel anode for rapid and reversible sodium-ion storage.According to in situ synchrotron X-ray diffractions and electrochemical analysis,the storage mechanism of FeVO UNSs anode is Na+intercalation pseudocapacitance under a safe potential window.The FeVO UNSs anode delivers high ICE(93.86%),high reversible capacity(292 mAh g^−1),excellent cycling stability,and remarkable rate capability.Furthermore,a pseudocapacitor–battery hybrid SIC(PBH-SIC)consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments.The PBH-SIC involves faradaic reaction on both cathode and anode materials,delivering a high energy density of 126 Wh kg^−1 at 91 W kg^−1,a high power density of 7.6 kW kg^−1 with an energy density of 43 Wh kg−1,and 9000 stable cycles.The tunable vanadate materials with high-performance Na+intercalation pseudocapacitance provide a direction for developing next-generation highenergy capacitors.展开更多
Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials ...Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials for sodium-ion storage,while their detailed reaction mechanism remains unexplored.Herein,we synthesize the mesoporous Mo3N2 nanowires(Meso-Mo_(3)N_(2)-NWs).The sodium-ion storage mechanism of Mo3N2 is systematically investigated through in-situ XRD,ex-situ experimental characterizations and detailed kinetics analysis.Briefly,the Mo_(3)N_(2) undergoes a surface pseudocapacitive redox charge storage process.Benefiting from the rapid surface redox reaction,the Meso-Mo_(3)N_(2)-NWs anode delivers high specific capacity(282 m Ah g^(-1) at 0.1 A g^(-1)),excellent rate capability(87 m Ah g^(-1) at 16 A g^(-1))and long cycling stability(a capacity retention of 78.6%after 800 cycles at 1 A g^(-1)).The present work highlights that the surface pseudocapacitive sodium-ion storage mechanism enables to overcome the sluggish sodium-ion diffusion process,which opens a new direction to design and synthesize high-rate sodiumion storage materials.展开更多
Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor M...Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor Mg^(2+)migration kinetics during the Mg^(2+)intercalation/extraction still hinders the progress of developing suitable cathode materials.Herein,a layered buserite Mg-Mn oxide(MMO)material with large interlayer space(~9.70A)and low-crystalline structure is studied as a high-performance cathode in ARMIBs.Compared with the counterpart,the Mg^(2+)migration kinetics of the MMO cathode can be enhanced by its unique structure(bigger interlayer spacing and low-crystalline structure).The layered buserite MMO as a high-performance ARMIBs cathode exhibits high Mg storage capacity(50 mAg^(-1):169.3 mAh g^(-1)),excellent rate capability(1000 mAg^(-1):98.3 mAh g^(-1)),and fast Mg^(2+)migration(an average diffusion coefficient:~4.21×10-^(10)cm^(2)s^(-1))in 0.5 M MgCl_(2)aqueous electrolyte.Moreover,the MMO-1//AC full battery achieved a high discharge capacity(100 mAg^(-1):111 mAh g^(-1)),and an ignored fading over 5000 cycles(1000 mAg^(-1)).Therefore,layered Mg-Mn oxide with large interlayer space may break a new path to develop the promising ARMIBs.展开更多
Lithium metal is a promising anode material owing to its very low electrochemical potential and ultrahigh specific capacity.However,the growth of lithium dendrites could result in a short lifespan,low coulombic effici...Lithium metal is a promising anode material owing to its very low electrochemical potential and ultrahigh specific capacity.However,the growth of lithium dendrites could result in a short lifespan,low coulombic efficiency,and potential safety hazards during the progress of lithium plating/stripping.These factors drastically hinder its application in lithium metal batteries.This review focuses on the use of three dimensional(3D)porous host frameworks to improve Li plating/stripping behaviors,accommodate the change in volume,and suppress or block lithium dendrite growth.Various 3D porous frameworks,including the conductive carbon-based,metal-based,and lithiophilic inorganic-compound frameworks are introduced and summarized in detail.The particular functions,relative developments,and optimized strategies of various 3D porous frameworks for lithium deposition/dissolution behaviors are discussed.Moreover,the challenges and promising developments in the field of Li metal anodes will be discussed at the end of this review.展开更多
Rechargeable magnesium batteries(RMBs)have attracted tremendous attention in energy storage ap-plications in term of high abundance,high specific capacity and remarkable safety of metallic magne-sium(Mg)anode.However,...Rechargeable magnesium batteries(RMBs)have attracted tremendous attention in energy storage ap-plications in term of high abundance,high specific capacity and remarkable safety of metallic magne-sium(Mg)anode.However,a serious passivation of Mg anode in the conventional electrolytes leads to extremely poor plating/stripping performance,further hindering its applications.Herein,we propose a convenient method to construct an artificial interphase layer on Mg anode by substitution and alloy-ing reactions between SbCl_(3) and Mg.This Sb-based artificial interphase layer containing mainly MgCl_(2) and Mg_(3) Sb_(2) endows the significantly improved interfacial kinetics and electrochemical performance of Mg anode.The overpotential of Mg plating/stripping in conventional Mg(TFSI)2/DME electrolytes is vastly reduced from over 2 V to 0.25-0.3 V.Combining experiments and calculations,we demonstrate that un-der the uniform distribution of MgCl_(2) and Mg_(3) Sb_(2),an electric field with a favorable potential gradient is formed on the anode surface,which enables swift Mg^(2+)migration.Meanwhile,this layer can inhibit the decomposition of electrolytes to protect anode.This work provides an in-depth exploration of the artificial solid-electrolyte interface(SEI)construction,and a more achievable and safe path to realize the application of metallic Mg anode in RMBs.展开更多
Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte inte...Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.展开更多
In this work,homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect.It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batte...In this work,homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect.It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batteries (LIBs).Impressively,the Ni0.33Co0.67Se hollow nanoprisms show superior specific capacity (1,575 mAh/g at the current density of 100 mA/g) and outstanding rate performance (850 mAh/g at 2,000 mA/g) as anode material for LIBs.This work proves the potential of bimetallic chalcogenide compounds as high performance anode materials for LIBs.展开更多
Owing to their safety and low cost,magnesium ion batteries(MIBs)have attracted much attention in recent years.However,the sluggish diffusion dynamics of magnesium ions hampers the search for appropriate cathode materi...Owing to their safety and low cost,magnesium ion batteries(MIBs)have attracted much attention in recent years.However,the sluggish diffusion dynamics of magnesium ions hampers the search for appropriate cathode materials with excellent electrochemical performance.Herein,we design and synthesize a novel flexible three-dimensional-networked composite of iron vanadate nanosheet arrays/carbon cloths(3 D FeVO/CC)as a binder-free cathode for MIBs.Relative to bare FeVO nanosheets,the 3 D binder-free electrode with designed architecture enables a full range of electrochemical potential,including a high specific capacity of270 mA h g^(-1) and an increased life span(over 5000 cycles).Such achievable high-density energy originates from the synergistic optimization of electron and ion kinetics,while the durability benefits from the robust structure that prevents degradation in cycling.The single-phase reaction mechanism of FeVO in the magnesium ion storage process is also explored by in-situ X-ray diffraction and Raman technologies.Moreover,a flexible MIB pouch cell(3 D FeVO/CCIMgNaTi_(3)O_(7)) is assembled and exhibits practical application potential.This work verifies that 3 D FeVO/CC is a potential candidate cathode material that can satisfy the requirements of highperformance MIBs.It also opens a new avenue to improve the electrochemical performance of cathode materials for MIBs.展开更多
Sluggish kinetics of Mg^2+intercalation and low working potential seriously hinder the development of highenergy-density magnesium-ion batteries(MIBs).Hence developing cathode materials with fast Mg^2+diffusion and hi...Sluggish kinetics of Mg^2+intercalation and low working potential seriously hinder the development of highenergy-density magnesium-ion batteries(MIBs).Hence developing cathode materials with fast Mg^2+diffusion and high working voltage is a key to overcome the obstacles in MIBs.Herein,a tetragonal NaV2O2(PO4)2 F/reduced graphene oxide(r GO)is proposed as an effective Mg^2+host for the first time.It exhibits the highest average discharge voltage(3.3 V vs.Mg^2+/Mg),fast diffusion kinetics of Mg^2+with the average diffusivity of 2.99×10^-10 cm^2s^-1,and ultralong cycling stability(up to 9500 cycles).The Mg^2+storage mechanism of NaV2O2(PO4)2 F/r GO is demonstrated as a single-phase(de)intercalation reaction by in situ X-ray diffraction(XRD)technology.Density functional theory(DFT)computations further reveal that Mg^2+ions tend to migrate along the a direction.X-ray absorption near edge structure(XANES)demonstrates a decrease in the average valence of vanadium,and the local coordination environment around vanadium site is highly conserved after magnesiation.Moreover,the assembled NaV2O2(PO4)2 F//Mg0.79NaTi2(PO4)3 Mg-ion full cell exhibits high power and energy densities,which indicates that NaV2O2(PO4)2 F/r GO owns potential for practical applications.This work achieves a breakthrough in the working voltage of cathode materials for MIBs and provides a new opportunity for high-energy-density MIBs.展开更多
Rechargeable magnesium batteries are identified as a promising next-generation energy storage system,but their development is hindered by the anode−electrolyte−cathode incompatibilities and passivation of magnesium me...Rechargeable magnesium batteries are identified as a promising next-generation energy storage system,but their development is hindered by the anode−electrolyte−cathode incompatibilities and passivation of magnesium metal anode.To avoid or alleviate these problems,the exploitation of alternative anode materials is a promising choice.Herein,we present titanium pyrophosphate(TiP_(2)O_(7))as anode materials for magnesium-ion batteries(MIBs)and investigate the effect of the crystal phase on its magnesium storage performance.Compared with the me-tastable layered TiP_(2)O_(7),the thermodynamically stable cubic TiP_(2)O_(7) displays a better rate capability of 72 mAh g^(−1) at 5000 mA g^(−1).Moreover,cubic TiP_(2)O_(7) exhibits excellent cycling stability with the capacity of 60 mAh g^(−1) after 5000 cycles at 1000 mA g^(−1),which are better than pre-viously reported Ti-based anode materials for MIBs.In situ X-ray diffraction technology confirms the single-phase magnesiumion inter-calation/deintercalation reaction mechanism of cubic TiP_(2)O_(7) with a low volume change of 3.2%.In addition,the density functional theory calcu-lation results demonstrate that three-dimensional magnesiumion diffu-sion can be allowed in cubic TiP_(2)O_(7) with a low migration energy barrier of 0.62 eV.Our work demonstrates the promise of TiP_(2)O_(7) as high-rate and long-life anode materials for MIBs and may pave the way for further development of MIBs.展开更多
The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate...The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate capability and cyclability.Rational regulations of metal oxides/oxyhydroxides with hollow geometry and disordered atomic frameworks represent efficient ways to improve their electrochemical properties.Herein,we propose a fast alkalietching method to realize the in-situ fabrication of iron oxyhydroxide with one-dimensional(1D)hierarchical hollow nanostructure and amorphous atomic structure from the iron vanadate nanowires.Benefiting from the improved electron/ion kinetics and efficient buffer ability for the volumetric change during the electro-cycles both in nanoscale and atomic level,the graphene-modified amorphous hierarchical FeOOH nanotubes(FeOOH-NTs)display high rate capability(~650 mA h g^−1 at 2000 mA g^−1)and superior long-term cycling stability(463 mA h g^−1 after 1800 cycles),which represents the best cycling performance among the reported FeOOH-based materials.More importantly,the selective dissolutionregrowth mechanism is demonstrated based on the time tracking of the whole transition process,in which the dissolution of FeVO4 and the in-situ selective re-nucleation of FeOOH during the formation of FeOOH-NTs play the key roles.The present strategy is also a general method to prepare various metal(such as Fe,Mn,Co,and Cu)oxides/oxyhydroxides with 1D hierarchical nanostructures.展开更多
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the National Natural Science Foundation of China(No.U23A20555,52202211)+1 种基金the Ninth Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028).
文摘Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety hazard induced by the formation of high-modulue Mg dendrites under a high current density(10 mA cm^(-1))was still revealed in recent years.It has forced researchers to re-examine the safety of RMBs.In this review,the intrinsic safety factors of key components in RMBs,such as uneven plating,pitting and flammability of Mg anode,heat release and crystalline water decomposition of cathode,strong corrosion,low oxidition stability and flammability of electrolytes,and soforth,are systematacially summarized.Their origins,formation mechanisms,and possible safety hazards are deeply discussed.To develop high-performance Mg anode,current strategies including designing artificial SEI,three-dimensional substrates,and Mg alloys are summarized.For practical electrolytes,the configurations of boron-centered anions and simple Mg salts and the functionalized solvent with high boiling point and low flammability are suggested to comprehensively design.In addition,the future study should more focus on the investigation on the thermal runaway and decomposition of cathode materials and separa-tors.This review aims to provide fundamental insights into the relationship between electrochemistry and safety,further promoting the sustainable development of RMBs.
基金This work was financially supported by the National Natural Science Foundation of China(No.22005256)the National Key R&D Program of China(Grant No.2016YFA0202600)the Natural Science Foundation of Fujian Province of China(No.2020J01034).
文摘High-performance and low-cost sodium-ion capacitors(SICs)show tremendous potential applications in public transport and grid energy storage.However,conventional SICs are limited by the low specific capacity,poor rate capability,and low initial coulombic efficiency(ICE)of anode materials.Herein,we report layered iron vanadate(Fe5V15O39(OH)9·9H2O)ultrathin nanosheets with a thickness of~2.2 nm(FeVO UNSs)as a novel anode for rapid and reversible sodium-ion storage.According to in situ synchrotron X-ray diffractions and electrochemical analysis,the storage mechanism of FeVO UNSs anode is Na+intercalation pseudocapacitance under a safe potential window.The FeVO UNSs anode delivers high ICE(93.86%),high reversible capacity(292 mAh g^−1),excellent cycling stability,and remarkable rate capability.Furthermore,a pseudocapacitor–battery hybrid SIC(PBH-SIC)consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments.The PBH-SIC involves faradaic reaction on both cathode and anode materials,delivering a high energy density of 126 Wh kg^−1 at 91 W kg^−1,a high power density of 7.6 kW kg^−1 with an energy density of 43 Wh kg−1,and 9000 stable cycles.The tunable vanadate materials with high-performance Na+intercalation pseudocapacitance provide a direction for developing next-generation highenergy capacitors.
基金supported by the National Natural Science Foundation of China(51832004,51521001)the National Key Research and Development Program of China(2016YFA0202603)+2 种基金the Program of Introducing Talents of Discipline to Universities(B17034)the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003)the “Double-First Class”Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials for sodium-ion storage,while their detailed reaction mechanism remains unexplored.Herein,we synthesize the mesoporous Mo3N2 nanowires(Meso-Mo_(3)N_(2)-NWs).The sodium-ion storage mechanism of Mo3N2 is systematically investigated through in-situ XRD,ex-situ experimental characterizations and detailed kinetics analysis.Briefly,the Mo_(3)N_(2) undergoes a surface pseudocapacitive redox charge storage process.Benefiting from the rapid surface redox reaction,the Meso-Mo_(3)N_(2)-NWs anode delivers high specific capacity(282 m Ah g^(-1) at 0.1 A g^(-1)),excellent rate capability(87 m Ah g^(-1) at 16 A g^(-1))and long cycling stability(a capacity retention of 78.6%after 800 cycles at 1 A g^(-1)).The present work highlights that the surface pseudocapacitive sodium-ion storage mechanism enables to overcome the sluggish sodium-ion diffusion process,which opens a new direction to design and synthesize high-rate sodiumion storage materials.
基金financially supported by the Fundamental Research Funds for the Central Universities(NO.2021CDJXDJH003)Guangdong National Technology Co.,Ltd.
文摘Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor Mg^(2+)migration kinetics during the Mg^(2+)intercalation/extraction still hinders the progress of developing suitable cathode materials.Herein,a layered buserite Mg-Mn oxide(MMO)material with large interlayer space(~9.70A)and low-crystalline structure is studied as a high-performance cathode in ARMIBs.Compared with the counterpart,the Mg^(2+)migration kinetics of the MMO cathode can be enhanced by its unique structure(bigger interlayer spacing and low-crystalline structure).The layered buserite MMO as a high-performance ARMIBs cathode exhibits high Mg storage capacity(50 mAg^(-1):169.3 mAh g^(-1)),excellent rate capability(1000 mAg^(-1):98.3 mAh g^(-1)),and fast Mg^(2+)migration(an average diffusion coefficient:~4.21×10-^(10)cm^(2)s^(-1))in 0.5 M MgCl_(2)aqueous electrolyte.Moreover,the MMO-1//AC full battery achieved a high discharge capacity(100 mAg^(-1):111 mAh g^(-1)),and an ignored fading over 5000 cycles(1000 mAg^(-1)).Therefore,layered Mg-Mn oxide with large interlayer space may break a new path to develop the promising ARMIBs.
基金the National Natural Science Foundation of China(51521001,51832004 and 51602239)the National Natural Science Fund for Distinguished Young Scholars(51425204)+1 种基金the Programme of Introducing Talents of Discipline to Universities(B17034)the Yellow Crane Talent(Science&Technology)Program of Wuhan City.
文摘Lithium metal is a promising anode material owing to its very low electrochemical potential and ultrahigh specific capacity.However,the growth of lithium dendrites could result in a short lifespan,low coulombic efficiency,and potential safety hazards during the progress of lithium plating/stripping.These factors drastically hinder its application in lithium metal batteries.This review focuses on the use of three dimensional(3D)porous host frameworks to improve Li plating/stripping behaviors,accommodate the change in volume,and suppress or block lithium dendrite growth.Various 3D porous frameworks,including the conductive carbon-based,metal-based,and lithiophilic inorganic-compound frameworks are introduced and summarized in detail.The particular functions,relative developments,and optimized strategies of various 3D porous frameworks for lithium deposition/dissolution behaviors are discussed.Moreover,the challenges and promising developments in the field of Li metal anodes will be discussed at the end of this review.
基金financially supported by the Fundamental Re-search Funds for the Central Universities(No.2021CDJXDJH003)the Chongqing Technology Innovation and Application Devel-opment Project(No.CSTB2022TIAD-KPX0028).
文摘Rechargeable magnesium batteries(RMBs)have attracted tremendous attention in energy storage ap-plications in term of high abundance,high specific capacity and remarkable safety of metallic magne-sium(Mg)anode.However,a serious passivation of Mg anode in the conventional electrolytes leads to extremely poor plating/stripping performance,further hindering its applications.Herein,we propose a convenient method to construct an artificial interphase layer on Mg anode by substitution and alloy-ing reactions between SbCl_(3) and Mg.This Sb-based artificial interphase layer containing mainly MgCl_(2) and Mg_(3) Sb_(2) endows the significantly improved interfacial kinetics and electrochemical performance of Mg anode.The overpotential of Mg plating/stripping in conventional Mg(TFSI)2/DME electrolytes is vastly reduced from over 2 V to 0.25-0.3 V.Combining experiments and calculations,we demonstrate that un-der the uniform distribution of MgCl_(2) and Mg_(3) Sb_(2),an electric field with a favorable potential gradient is formed on the anode surface,which enables swift Mg^(2+)migration.Meanwhile,this layer can inhibit the decomposition of electrolytes to protect anode.This work provides an in-depth exploration of the artificial solid-electrolyte interface(SEI)construction,and a more achievable and safe path to realize the application of metallic Mg anode in RMBs.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the National Natural Science Foundation of China(No.U23A20555,52202211)+3 种基金the Ninth Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028)the Fundamental Research Funds for the Central Universities(2023CDJXY-018)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2022119,cx2023087).
文摘Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.
基金the National Natural Science Foundation of China (Nos.51425204,51521001,and 51602239)the National Key R&D Program of China (No.2016YFA0202603)+2 种基金the Program of Introducing Talents of Discipline to Universities (No.B17034)the Yellow Crane Talent (Science & Technology) Program of Wuhan Citythe International Science & Technology Cooperation Program of China (No.2013DFA50840).
文摘In this work,homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect.It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batteries (LIBs).Impressively,the Ni0.33Co0.67Se hollow nanoprisms show superior specific capacity (1,575 mAh/g at the current density of 100 mA/g) and outstanding rate performance (850 mAh/g at 2,000 mA/g) as anode material for LIBs.This work proves the potential of bimetallic chalcogenide compounds as high performance anode materials for LIBs.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the National Natural Science Foundation of China(51832004 and 51972259)+1 种基金the Natural Science Foundation of Hubei Province(2019CFA001)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003)。
文摘Owing to their safety and low cost,magnesium ion batteries(MIBs)have attracted much attention in recent years.However,the sluggish diffusion dynamics of magnesium ions hampers the search for appropriate cathode materials with excellent electrochemical performance.Herein,we design and synthesize a novel flexible three-dimensional-networked composite of iron vanadate nanosheet arrays/carbon cloths(3 D FeVO/CC)as a binder-free cathode for MIBs.Relative to bare FeVO nanosheets,the 3 D binder-free electrode with designed architecture enables a full range of electrochemical potential,including a high specific capacity of270 mA h g^(-1) and an increased life span(over 5000 cycles).Such achievable high-density energy originates from the synergistic optimization of electron and ion kinetics,while the durability benefits from the robust structure that prevents degradation in cycling.The single-phase reaction mechanism of FeVO in the magnesium ion storage process is also explored by in-situ X-ray diffraction and Raman technologies.Moreover,a flexible MIB pouch cell(3 D FeVO/CCIMgNaTi_(3)O_(7)) is assembled and exhibits practical application potential.This work verifies that 3 D FeVO/CC is a potential candidate cathode material that can satisfy the requirements of highperformance MIBs.It also opens a new avenue to improve the electrochemical performance of cathode materials for MIBs.
基金supported by the National Key Research and Development Program of China(2016YFA0202603 and 2016YFA0202601)the National Natural Science Fund for Distinguished Young Scholars(51425204)+1 种基金the National Natural Science Foundation of China(51832004,51602239 and 51672307)the International Science&Technology Cooperation Program of China(2013DFA50840)。
文摘Sluggish kinetics of Mg^2+intercalation and low working potential seriously hinder the development of highenergy-density magnesium-ion batteries(MIBs).Hence developing cathode materials with fast Mg^2+diffusion and high working voltage is a key to overcome the obstacles in MIBs.Herein,a tetragonal NaV2O2(PO4)2 F/reduced graphene oxide(r GO)is proposed as an effective Mg^2+host for the first time.It exhibits the highest average discharge voltage(3.3 V vs.Mg^2+/Mg),fast diffusion kinetics of Mg^2+with the average diffusivity of 2.99×10^-10 cm^2s^-1,and ultralong cycling stability(up to 9500 cycles).The Mg^2+storage mechanism of NaV2O2(PO4)2 F/r GO is demonstrated as a single-phase(de)intercalation reaction by in situ X-ray diffraction(XRD)technology.Density functional theory(DFT)computations further reveal that Mg^2+ions tend to migrate along the a direction.X-ray absorption near edge structure(XANES)demonstrates a decrease in the average valence of vanadium,and the local coordination environment around vanadium site is highly conserved after magnesiation.Moreover,the assembled NaV2O2(PO4)2 F//Mg0.79NaTi2(PO4)3 Mg-ion full cell exhibits high power and energy densities,which indicates that NaV2O2(PO4)2 F/r GO owns potential for practical applications.This work achieves a breakthrough in the working voltage of cathode materials for MIBs and provides a new opportunity for high-energy-density MIBs.
基金This study was supported by the National Natural Science Foundation of China(51832004,U1804253,and 51972259)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003).
文摘Rechargeable magnesium batteries are identified as a promising next-generation energy storage system,but their development is hindered by the anode−electrolyte−cathode incompatibilities and passivation of magnesium metal anode.To avoid or alleviate these problems,the exploitation of alternative anode materials is a promising choice.Herein,we present titanium pyrophosphate(TiP_(2)O_(7))as anode materials for magnesium-ion batteries(MIBs)and investigate the effect of the crystal phase on its magnesium storage performance.Compared with the me-tastable layered TiP_(2)O_(7),the thermodynamically stable cubic TiP_(2)O_(7) displays a better rate capability of 72 mAh g^(−1) at 5000 mA g^(−1).Moreover,cubic TiP_(2)O_(7) exhibits excellent cycling stability with the capacity of 60 mAh g^(−1) after 5000 cycles at 1000 mA g^(−1),which are better than pre-viously reported Ti-based anode materials for MIBs.In situ X-ray diffraction technology confirms the single-phase magnesiumion inter-calation/deintercalation reaction mechanism of cubic TiP_(2)O_(7) with a low volume change of 3.2%.In addition,the density functional theory calcu-lation results demonstrate that three-dimensional magnesiumion diffu-sion can be allowed in cubic TiP_(2)O_(7) with a low migration energy barrier of 0.62 eV.Our work demonstrates the promise of TiP_(2)O_(7) as high-rate and long-life anode materials for MIBs and may pave the way for further development of MIBs.
基金the National Key Research and Development Program of China (Nos. 2016YFA0202601and 2016YFA0202603)the National Natural Science Foundation of China (Nos.51425204 and 51602239)+2 种基金the Hubei Provincial Natural Science Foundation of China (No.2016CFB267)the Fundamental Research Funds for the Central Universities (No.2017-CL-A1-43)Prof.Liqiang Mai gratefully acknowledged financial support from China Scholarship Council (No.201606955096).
基金This work was supported by the National Key Research and Development Program of China(2017YFE0127600,2016YFA0202600)the Program of Introducing Talents of Discipline to Universities(B17034)+3 种基金the National Natural Science Foundation of China(51521001 and 51602239)the National Natural Science Fund for Distinguished Young Scholars(51425204)Hubei Provincial Natural Science Foundation(2016CFB267)the Fundamental Research Funds for the Central Universities(WUT:2017-YB-001).
文摘The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate capability and cyclability.Rational regulations of metal oxides/oxyhydroxides with hollow geometry and disordered atomic frameworks represent efficient ways to improve their electrochemical properties.Herein,we propose a fast alkalietching method to realize the in-situ fabrication of iron oxyhydroxide with one-dimensional(1D)hierarchical hollow nanostructure and amorphous atomic structure from the iron vanadate nanowires.Benefiting from the improved electron/ion kinetics and efficient buffer ability for the volumetric change during the electro-cycles both in nanoscale and atomic level,the graphene-modified amorphous hierarchical FeOOH nanotubes(FeOOH-NTs)display high rate capability(~650 mA h g^−1 at 2000 mA g^−1)and superior long-term cycling stability(463 mA h g^−1 after 1800 cycles),which represents the best cycling performance among the reported FeOOH-based materials.More importantly,the selective dissolutionregrowth mechanism is demonstrated based on the time tracking of the whole transition process,in which the dissolution of FeVO4 and the in-situ selective re-nucleation of FeOOH during the formation of FeOOH-NTs play the key roles.The present strategy is also a general method to prepare various metal(such as Fe,Mn,Co,and Cu)oxides/oxyhydroxides with 1D hierarchical nanostructures.