A fiberform nanostructure was synthesized by exposing high-density helium plasma to a 100 nm thick tungsten thin film in the linear plasma device NAGDIS-II.After helium plasma exposure,the cross-section of samples was...A fiberform nanostructure was synthesized by exposing high-density helium plasma to a 100 nm thick tungsten thin film in the linear plasma device NAGDIS-II.After helium plasma exposure,the cross-section of samples was observed by a scanning electron microscope,transmission electron microscope,and focused ion beam scanning electron microscope.It is shown that the thickness of the nanostructured layer increases significantly for only a short irradiation time.The optical absorptivity remains high,even though it is exposed to helium plasma for a short time.The usage of the thin film can shorten the processing time for nanostructure growth,which will be beneficial for commercial production.展开更多
The formation mechanism of nanocone structure on silicon(Si)surface irradiated by helium plasma has been investigated by experiments and simulations.Impurity(molybdenum)aggregated as shields on Si was found to be a ke...The formation mechanism of nanocone structure on silicon(Si)surface irradiated by helium plasma has been investigated by experiments and simulations.Impurity(molybdenum)aggregated as shields on Si was found to be a key factor to form a high density of nanocone in our previous study.Here to concrete this theory,a simulation work has been developed with SURO code based on the impurity concentration measurement of the nanocones by using electron dispersive x-ray spectroscopy.The formation process of the nanocone from a flat surface was presented.The modeling structure under an inclining ion incident direction was in good agreement with the experimental result.Moreover,the redeposition effect was proposed as another important process of nanocone formation based on results from the comparison of the cone diameter and sputtering yield between cases with and without the redeposition effect.展开更多
文摘A fiberform nanostructure was synthesized by exposing high-density helium plasma to a 100 nm thick tungsten thin film in the linear plasma device NAGDIS-II.After helium plasma exposure,the cross-section of samples was observed by a scanning electron microscope,transmission electron microscope,and focused ion beam scanning electron microscope.It is shown that the thickness of the nanostructured layer increases significantly for only a short irradiation time.The optical absorptivity remains high,even though it is exposed to helium plasma for a short time.The usage of the thin film can shorten the processing time for nanostructure growth,which will be beneficial for commercial production.
基金supported in part by a Grant-in Aid for Scientific Research (Nos.17KK0132, 19H01874) from the Japan Society for the Promotion of Science (JSPS)supported by National MCF Energy R&D Program of China (Nos.2018YFE0311100 and 2018YFE0303105)National Natural Science Foundation of China (No.12075047)
文摘The formation mechanism of nanocone structure on silicon(Si)surface irradiated by helium plasma has been investigated by experiments and simulations.Impurity(molybdenum)aggregated as shields on Si was found to be a key factor to form a high density of nanocone in our previous study.Here to concrete this theory,a simulation work has been developed with SURO code based on the impurity concentration measurement of the nanocones by using electron dispersive x-ray spectroscopy.The formation process of the nanocone from a flat surface was presented.The modeling structure under an inclining ion incident direction was in good agreement with the experimental result.Moreover,the redeposition effect was proposed as another important process of nanocone formation based on results from the comparison of the cone diameter and sputtering yield between cases with and without the redeposition effect.