The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because curre...The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because currently state-of-art adsorbents still suffer from low binding affinity with CH_(3)I. Here, we proposed a brand-new adsorption topological structure by developing a 2D interdigitated layered framework, named SCU-20, featuring slide-like channel with multiple active sites for CH_(3)I capture. The responsive rotating-adaptive aperture of SCU-20 enables the optimal utilization of all active sites within the pore for highly selective recognition and capture of CH_(3)I. A record-breaking CH_(3)I uptake capacity of 1.84 g/g was achieved under static sorption conditions with saturated CH_(3)I vapor. Both experimental and theoretical findings demonstrated that the exceptional uptake of SCU-20 towards CH_(3)I can be attributed to the confined physical electrostatic adsorption of F sites, coupled with the chemical nitrogen methylation reaction with uncoordinated N atoms of pyrazine. Moreover, dynamic CH_(3)I uptake capacity potentially allows for the capture of CH_(3)I in simulated real-world off gas reprocessing conditions. This study highlights the potential of SCU-20 as a promising candidate for efficient capture of iodine species and contributes to the development of effective solutions for radioactive iodine remediation.展开更多
Harnessing solar energy by photocatalytically converting oxygen and water into high-value-added H_(2)O_(2)is a promising way of alleviating both environmental and energy issues.It is worth noting that suppressing detr...Harnessing solar energy by photocatalytically converting oxygen and water into high-value-added H_(2)O_(2)is a promising way of alleviating both environmental and energy issues.It is worth noting that suppressing detrimental side reactions,such as the generation of·O_(2)^(-),is a critical approach to enhancing H_(2)O_(2)production.Herein,a 2-fold interpenetrating 3D uranium-organic framework(YTU-W-1)was developed and introduced for photocatalytic H_(2)O_(2)production.The material demonstrates a different photocatalytic mechanism when employing uranyl as an initiator,as compared with the conventional semiconductor photocatalytic pathway involving photo-generated charge carriers.Benefiting from the strong hydrogen abstraction effect of the U≡O·and the direct one-step oxygen reduction pathway,YTU-W-1 exhibits enhanced photocatalytic performance for H_(2)O_(2)production with yield efficiency of 221μmol h^(-1)g^(-1).Furthermore,YTU-W-1 displays a high H_(2)O_(2)selectivity of 68%,confirmed by rotating ring-disk electrode(RRDE)measurement.DFTcalculations were used to elucidate the critical role of uranyl in the photocatalytic oxygen reduction reaction for H_(2)O_(2)production.This research introduces an innovative approach to photo-driven H_(2)O_(2)production,underscoring the potential for heterogeneous catalysts to engage in photocatalytic reactions independently of photogenerated charge carriers.展开更多
Technetium-99m(99mTc)is the most used(>80%)radionuclide in the clinical nuclear diagnostic imaging procedure.The traditional approach to preparing 99mTc-based imaging agents utilizes stannous chloride(SnCl_(2))for ...Technetium-99m(99mTc)is the most used(>80%)radionuclide in the clinical nuclear diagnostic imaging procedure.The traditional approach to preparing 99mTc-based imaging agents utilizes stannous chloride(SnCl_(2))for the reduction of noncomplexing pertechnetate(^(99m)TcO_(4)^(−))to low-valent Tc[e.g.,Tc(IV)].This process,however,is difficult to control precisely and usually results in toxic SnCl_(2) residue and remaining 99mTc(VII),both of which are destructive to humans.Herein,we report a new strategy for preparing^(99m)TcO_(4)^(−)-labeled agents without adding any reductants.The deliberately designed nanoscale cationic polymeric network(SCU-CPN-3)shows excellent affinity for^(99m)TcO_(4)^(−)even at trace levels originating from the strong p-πinteraction with^(99m)TcO_(4)^(−).Impressively,record-fast labeling kinetics are observed,where almost quantitative labeling efficacy(>96%)can be achieved within 1 min,giving rise to a short labeling time and simple operation using a clinical kit.Both single-photon emission computed tomography(SPECT)images and ex vivo biodistribution of different tumor model analyses verify the potential feasibility of this strategy for tumor imaging.展开更多
Developing efficient adsorbents for radon(Rn)capture from the ambient environment is of paramount importance for public health.However,it poses a great challenge due to the chemical inertness and extremely low molar c...Developing efficient adsorbents for radon(Rn)capture from the ambient environment is of paramount importance for public health.However,it poses a great challenge due to the chemical inertness and extremely low molar concentration of Rn in air.Herein,we report a zeolite imidazolate frameworkderived metallic carbon adsorbent(Zn@NPC)with record high Rn removal performance under ambient conditions.Upon one-step pyrolysis,the prepared Zn@NPC possesses pores with a preference for Rn and atomically dispersed Zn sites,achieving a high Rn removal efficiency that doubles in adsorption coefficient(9.47 L·g^(−1))and triples in adsorption kinetic coefficient(20.25 mL·g^(−1)·min^(−1))over the benchmark Rn adsorbent coconut activated charcoal.Density functional theory calculations elucidate the important role of the metal polarization effect,which cooperates with the pore size confinement effect to boost the overall Rn adsorption performance.This work launches a promising alternative for practical Rn capture.展开更多
Post-synthetic functionalization of covalent organic frameworks(COFs)is an alternative way to enhance and broaden their properties and potential applications.However,the chemical functionalization of COFs is a great c...Post-synthetic functionalization of covalent organic frameworks(COFs)is an alternative way to enhance and broaden their properties and potential applications.However,the chemical functionalization of COFs is a great challenge because traditional procedures are often time-and energy-consuming,while the crystallinity of COFs can be damaged under harsh conditions.Here we report the in-situ introduction of functional graft chains onto the skeleton of COFs during the synthesis process through the combination of radiation-induced synthesis and graft polymerization techniques under ^(60)Co gamma-ray radiation.The synthesis and functionalization of COFs are simultaneously accomplished in a chemical system under ambient conditions yielding a large number of different functionalized COFs.The obtained carboxyl-functionalized COFs exhibit excellent radioactive uranium removal capabilities from aqueous solution with fast uptake dynamics,high adsorption capacity,and excellent selectivity over other competing metal ions.展开更多
The second example of tetravalent plutonium carboxyl-based organic framework,^(242)Pu(OH)[PO[(C_(6)H_(4))COO]_(3)]·H_(2)O,termed as PuTPO(TPO=tris(4-carboxylphenyl)-phosphineoxide),was reported in this work.A ser...The second example of tetravalent plutonium carboxyl-based organic framework,^(242)Pu(OH)[PO[(C_(6)H_(4))COO]_(3)]·H_(2)O,termed as PuTPO(TPO=tris(4-carboxylphenyl)-phosphineoxide),was reported in this work.A series of characterizations of PuTPO,such as X-ray crystallography and solid-state UV-Vis-NIR spectroscopy,were carried out to expatiate its structure and physicochemical properties.PuTPO is constructed by dimers of the plutonium-oxygen subunit of[Pu_(2)O_(16)].Characteristic peaks located at approximately 1100 nm can be considered to be the fingerprint peaks of tetravalent plutonium.While PuTPO can maintain high crystallinity within several months after synthesis,it exhibits a radiation-induced swelling effect probed by the expansion of cell parameter of b axis after self-irradiation fromα-decay of ^(242)Pu.This result enriches the inventory of tetravalent plutonium compounds and provides an insight into the irradiation resistance of metal-organic frameworks.展开更多
Developing highly efficient photocatalysts for selective oxidation of benzene to phenol is of great significance. However, it is still challenging to simultaneously achieve high conversion rate and selectivity.Herein,...Developing highly efficient photocatalysts for selective oxidation of benzene to phenol is of great significance. However, it is still challenging to simultaneously achieve high conversion rate and selectivity.Herein, we demonstrate 99.9% of benzene photoconversion and 99.1% of phenol selectivity under the illumination of AM 1.5 for 12 h. For this purpose, an advanced CuO@CN photocatalyst has been fabricated by loading tubular carbon nitride(CN) with CuO nanoparticles thermally polymerized from Cu-based metal-organic frameworks(MOFs). The sluggish photocharge carrier recombination rate and the excellent stability indicate that the as-prepared nanocomposite is an ideal photocatalyst for benzene oxidation application. This work paves a new avenue for designing novel photocatalyst based on MOFs and carbon nitride materials.展开更多
Efficient adsorption of gaseous radioiodine is pivotal for the sustainable development of nuclear energy and the long-termradiation safety of the ecological system.However,state-of-the-art adsorbents(e.g.metal-organic...Efficient adsorption of gaseous radioiodine is pivotal for the sustainable development of nuclear energy and the long-termradiation safety of the ecological system.However,state-of-the-art adsorbents(e.g.metal-organic frameworks and covalent-organic frameworks)currently under exploration suffer severely from limited adsorption capacity,especially under a real-world scenariowith extremely lowradioiodine concentration and elevated temperature.This mostly originates from the relatively weak sorption driving forces mainly determinedby the iodine-adsorbent interaction consistingof noncovalent interactionswith a small fraction of strong chemical bonding.Here,we document the discovery of an open metal-sulfide framework((NH_(4))_(2)(Sn_(3)S_(7)),donated as SCU-SnS)constructed by three different types of active sites as a superior iodine adsorbent.Benefiting from the ability of iodine for pre-enrichment into the framework by charge-balancing NH_(4)^(+)through N-H···I interaction,the efficient reduction of I^(2)affording I^(-)by S^(2-),and extremely high binding affinity between Sn_(4)^(+)and I^(-),SCU-SnS exhibit a record-breaking iodine adsorption capacity(2.12 g/g)under dynamic breakthrough conditions and the highest static capacity(6.12 g/g)among all reported inorganic adsorbents,both at 348 K.Its facile synthesis and low cost endow SCU-SnS with powerful application potential for the nuclear industry.展开更多
Platinum recovery from waste electrical and electronic equipment(WEEE) in highly acidic solutions is significant to the electronics industry and environmental remediation. However, the lack of ingenious design and syn...Platinum recovery from waste electrical and electronic equipment(WEEE) in highly acidic solutions is significant to the electronics industry and environmental remediation. However, the lack of ingenious design and synergetic coordination gives rise to unsatisfied PtCl_(4)^(2-)extraction capacities and selectivities in most previously reported adsorbents(e.g., polymeric and inorganic materials). Herein, we proposed a synergistic strategy that realizes highly selective PtCl_(4)^(2-)uptake through first-and second-sphere coordinations. The proof-of-concept imine-linked covalent organic framework(SCU-COF-3) was found to chelate Pt Cl42-via the direct N…Pt coordination and the synergistically interlaminar N–H…Cl hydrogen bonds, which was disclosed by the comprehensive analysis of extended X-ray adsorption fine structure(EXAFS) characterizations and density functional theory(DFT) calculations. The unique adsorption mechanism imparts a superior adsorption capacity(168.4 mg g-1)and extraordinary Pt(II) selectivity to SCU-COF-3 under static conditions. In addition, SCU-COF-3 exhibits an upgraded distribution coefficient of 1.62 × 10^(5)mL· g^(-1), one order of magnitude higher than those of reported natural adsorbents. Specifically, SCU-COF-3 can extract PtCl_(4)^(2- )quantitatively from a simulated acidic waste solution coexisting with other 12 competitive ions, suggesting its promising application in practical scenarios.展开更多
With the development of nuclear energy, large amounts of radionuclides are inevitably released into the natural environment. It is necessary to eliminate radionuclides from wastewater for the protection of environment...With the development of nuclear energy, large amounts of radionuclides are inevitably released into the natural environment. It is necessary to eliminate radionuclides from wastewater for the protection of environment. Nanomaterials have been considered as the potential candidates for the effective and selective removal of radionuclides from aqueous solutions under complicated conditions because of their high specific surface area, large amounts of binding sites, abundant functional groups, pore-size controllable and easily surface modification. This review mainly summarized the recent studies for the synthesis, fabrication and surface modification of novel nanomaterials and their applications in the efficient elimination and solidification of radionuclides,and discussed the interaction mechanisms from batch experiments, spectroscopy analysis and theoretical calculations. The sorption capacities with other materials, advantages and disadvantages of different nanomaterials are compared, and at last the perspective of the novel nanomaterials is summarized.展开更多
^(99)Tc is a long-lived radionuclide present in large amounts as TcO_(4)^(-)-anion in used nuclear fuel.Its removal from the waste stream is highly desirable because of its interference capability with actinide separa...^(99)Tc is a long-lived radionuclide present in large amounts as TcO_(4)^(-)-anion in used nuclear fuel.Its removal from the waste stream is highly desirable because of its interference capability with actinide separation and its volatile nature during the nuclear waste vitrification process.Despite the progress achieved in the past few years,the design of anion-exchange materials with optimized Tc uptake property and improved stability under the extreme condition is still a research goal beneficial for reducing the volume of secondary radioactive solid waste generated during the waste partitioning process.However,their design philosophy remains elusive,with challenges coming from charge repulsion,steric hindrance,and insufficient reactive sites within the materials.Herein,we present a design philosophy of cationic polymer network materials for TcO_(4)^(-)separation by systematic precursor screening and structure prediction.This affords an optimized material,SCU-CPN-2(SCU=Soochow University),with extremely high positive charge density while maintaining high radiation resistance.SCU-CPN-2 exhibits a record high adsorption capacity1,467 mg/g towards the surrogate ReO_(4)^(-)compared to all anion-exchange materials reported up to date.In addition to ultrafast adsorption kinetics,SCU-CPN-2 has remarkable selectivity over nitrate and sulfate,and facile recyclability.展开更多
Main observation and conclusion Two new uranium(VI)phosphonate compounds,namely K_(8)[N(C_(2)H_(5))_(4)]_(2)(UO_(2))_(17)(H_(2)O)_(4)[CH_(2)(PO_(3))_(2)]_(8)[CH_(2)(PO_(3))(PO_(3)H)]_(4)·16(H_(2)O)(1)and[N(C_(2)H...Main observation and conclusion Two new uranium(VI)phosphonate compounds,namely K_(8)[N(C_(2)H_(5))_(4)]_(2)(UO_(2))_(17)(H_(2)O)_(4)[CH_(2)(PO_(3))_(2)]_(8)[CH_(2)(PO_(3))(PO_(3)H)]_(4)·16(H_(2)O)(1)and[N(C_(2)H_(5))_(4)]_(4)(H_(3)O)_(2)(UO_(2))_(10)[CH_(2)(PO_(3))_(2)]_(5)[CH_(2)(PO_(3))(PO_(3)H)]_(2)·10H_(2)O(2),have been synthesized under mild hydro/solvothermal condition.The structural analysis of the two compounds reveals that they both contain all three typical coordination geometries of the U(VI)ions,including UO;tetragonal,UO,pentagonal,and UOg hexagonal bipyramids.Moreover,compound 1 displays a tempera-ture-induced single crystal to single crystal phase transformation as confirmed by the Single-crystal X-ray diffraction data collected at different temperatures.Temperature-dependent fluorescence spectra presented herein illustrate the perturbation of the electronic structure of uranyl centers.展开更多
Crystalline coordination complexes of actinides,especially in atypical oxidation states,are not only fundamentally important for expanding the notably limited knowledge on the bonding nature of actinides but could als...Crystalline coordination complexes of actinides,especially in atypical oxidation states,are not only fundamentally important for expanding the notably limited knowledge on the bonding nature of actinides but could also provide critical information toward the development of nuclear fuel cycle,waste management,and national security.Plutonium(Pu)is the only element in the periodic table that could exist in four oxidation states in aqueous solutions simultaneously.展开更多
Summary of main observation and conclusion We present a new method for generating europium oxalate compounds by decomposing of N-methyl 2-pyrrolidone in HNO3 media.The reaction exhibits high selectivity towards Eu^3+ ...Summary of main observation and conclusion We present a new method for generating europium oxalate compounds by decomposing of N-methyl 2-pyrrolidone in HNO3 media.The reaction exhibits high selectivity towards Eu^3+ over UO2^2+,which suggests that these conditions could be applied to a selective crystallization based separation system for trivalent lanthanides and hexavalent actinides.展开更多
Internal contamination of actinides has led to significant health hazards to the public and workers in the context of nuclear power plant accidents,uranium ore mining,and reprocessing of the used fuel.An effective seq...Internal contamination of actinides has led to significant health hazards to the public and workers in the context of nuclear power plant accidents,uranium ore mining,and reprocessing of the used fuel.An effective sequestering agent that is able to remove accidentally incorporated actinides in vivo with low toxicity is always in urgent need.The molecular decorporation ligands have been the most widely researched agents for the past few decades,while preliminary studies of functionalized nanoparticles have shown their clear advantages in metal binding selectivity,toxicity,and oxidative stress alleviation.Herein,the state-of-the-art of those two types of decorporation agents is presented with special attention being paid on the correlation between the solution and solid-state chemistry of those agents with actinides and the corresponding decorporation efficacies.展开更多
Separation of the minor actinides(Am and Cm)from lanthanides in high-level liquid wastes(HLLW)is one of the most challenging chemical separation tasks known owing to their chemical similarities and is highly significa...Separation of the minor actinides(Am and Cm)from lanthanides in high-level liquid wastes(HLLW)is one of the most challenging chemical separation tasks known owing to their chemical similarities and is highly significant in nuclear fuel reprocessing plants because it could practically lead to sustainable nuclear energy by closing the nuclear fuel cycle.The solid phase extraction is proposed to be a possible strategy but all reported sorbent materials severely suffer from limited stability and/or efficiency caused by the harsh conditions of high acidity coupled with intense irradiation.Herein,a phenanthroline-based polymeric organic framework(PhenTAPB-POF)was designed and tested for the separation of trivalent americium from lanthanides for the first time.Due to its fully conjugated structure,PhenTAPB-POF exhibits previously unachieved stability under the combined extreme conditions of strong acids and high irradiation field.The americium partitioning experiment indicates that PhenTAPB-POF possesses an ultrahigh adsorption selectivity towards Am(Ⅲ)over lanthanides(e.g.,SFAm(Ⅲ)/Eu(Ⅲ)=3326)in highly acidic simulated HLLW and relatively fast adsorption kinetics in both static and dynamic experiments.Am(Ⅲ)can be almost quantitatively eluted from the PhenTAPB-POF packed-column using a concentrated nitric acid elution.The high stability and superior separation performance endow PhenTAPB-POF with the promising alternative for separating minor actinides over lanthanides from highly acidic HLLW streams.展开更多
The environmental contamination of uranium will occur in scenarios such as nuclear accidents and leakage from nuclear waste storage sites,which eventually leads to the internal uranium exposure of people,causing conse...The environmental contamination of uranium will occur in scenarios such as nuclear accidents and leakage from nuclear waste storage sites,which eventually leads to the internal uranium exposure of people,causing consequential injuries of renal failure,osteosarcoma,etc.The development of uranyl specific chelating agents that could sequester uranium in vivo is in urgent need and is important for the safe and efficient development of nuclear industry.Metal organic frameworks(MOFs)already serve as efficient uranium depletion materials in solutions of a wide range of pH and ionic strength for nuclear fuel recycling,uranium extraction from seawater,as well as environmental decontamination.Herein,a chromium-based nano-metal organic framework(nano-MOF)functionalized interiorly with 3,2-HOPO ligands,MIL-101-HOPO,is rationally synthesized.In vitro adsorption experiments show that MIL-101-HOPO exhibits high adsorption selectivity and fast adsorption kinetics for uranyl.The results of in vivo uranyl decorporation assays reveal that MIL-101-HOPO with the decoration of HOPO ligands on the interior wall exhibits significantly increased uranyl removal ratio in kidneys comparing to the pristine nMOFs,and is more effective than the clinically used ZnNa_(3)-DTPA.All those results corroborate the interior functionalization of MOFs as an efficient strategy to develop promising uranyl decorporation agents.展开更多
We reported the synthesis,single crystal structure,and solid-state UV-Vis-NIR spectroscopy of a new transplutonium metal-organic framework(MOFs),Am(H_(2)O)[PO[(C6H4)COO]_(3)],denoted as AmTPO(TPO=tris(4-carboxylphenyl...We reported the synthesis,single crystal structure,and solid-state UV-Vis-NIR spectroscopy of a new transplutonium metal-organic framework(MOFs),Am(H_(2)O)[PO[(C6H4)COO]_(3)],denoted as AmTPO(TPO=tris(4-carboxylphenyl)-phosphineoxide).AmTPO forms a three-dimensional metal-organic framework structure with americium dimers as the secondary building unit.Clear 5f→5f transi-tions attributed to trivalent americium was observed in the absorption spectrum of AmTPO ranging from 300 to 1200 nm.Notably,AmTPO can maintain the crystallinity with no observable structural degradation within several months after being synthesized,re-vealing a long-term radiation resistance of this structure and the potential application of MOFs as a platform for nuclear waste dis-posal.展开更多
Prof.Zhifang Chai,born in October 1942,is a radioanalytical chemist working at the Institute of High Energy Physics,Chinese Academy of Sciences and Soochow University.He graduated from Fudan University in 1964.As an A...Prof.Zhifang Chai,born in October 1942,is a radioanalytical chemist working at the Institute of High Energy Physics,Chinese Academy of Sciences and Soochow University.He graduated from Fudan University in 1964.As an Alexander von Humboldt Foundation fellow,he worked at Cologne University,Germany from1980 to 1982.展开更多
Open metal site(OMS)seated in a luminescent lanthanide(Ln)metal center offers an opportunity for rationally tuning the spectroscopic behavior of lanthanide-organic frameworks aiming for a wide range of sensing applica...Open metal site(OMS)seated in a luminescent lanthanide(Ln)metal center offers an opportunity for rationally tuning the spectroscopic behavior of lanthanide-organic frameworks aiming for a wide range of sensing applications.However,given the spherical nature of common coordination geometries of trivalent lanthanides and the generally strong Ln–O bonds,the lanthanide based OMS is rarely reported and difficult to be functionalized.We report here a unique europium-organic framework containing abundant quasi-OMS that is protected by an abnormal weak Eu–O bond.These quasi-OMSs offer reversible direct binding sites for water molecules probed by X-ray crystallography,leading to sensitive,visible,and ratiometric luminescent sensing toward humidity and water content in organic solvents.The specific recognition of water based on quasi-luminescentOMSs gives rise to a superior water detection limit down to 0.0003%v/v,which is one order of magnitude lower than that of Karl Fischer method.展开更多
基金supported by the Intergovernmental International Cooperation of the National Key R&D Program of China(2022YFE0105300)the National Natural Science Foundation of China(21790374, 22276130, 22176139, 21825601)the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because currently state-of-art adsorbents still suffer from low binding affinity with CH_(3)I. Here, we proposed a brand-new adsorption topological structure by developing a 2D interdigitated layered framework, named SCU-20, featuring slide-like channel with multiple active sites for CH_(3)I capture. The responsive rotating-adaptive aperture of SCU-20 enables the optimal utilization of all active sites within the pore for highly selective recognition and capture of CH_(3)I. A record-breaking CH_(3)I uptake capacity of 1.84 g/g was achieved under static sorption conditions with saturated CH_(3)I vapor. Both experimental and theoretical findings demonstrated that the exceptional uptake of SCU-20 towards CH_(3)I can be attributed to the confined physical electrostatic adsorption of F sites, coupled with the chemical nitrogen methylation reaction with uncoordinated N atoms of pyrazine. Moreover, dynamic CH_(3)I uptake capacity potentially allows for the capture of CH_(3)I in simulated real-world off gas reprocessing conditions. This study highlights the potential of SCU-20 as a promising candidate for efficient capture of iodine species and contributes to the development of effective solutions for radioactive iodine remediation.
基金supported by the National Natural Science Foundation of China(22176163,22106117,52200204)the Natural Science Foundation of Shandong Province(ZR2020QB147,ZR2022QE032)+1 种基金the Young Taishan Scholars Program(tsqn201909082)the Interdisciplinary Basic Frontier Innovation Program of Suzhou Medical College of Soochow University(YXY2304031)。
文摘Harnessing solar energy by photocatalytically converting oxygen and water into high-value-added H_(2)O_(2)is a promising way of alleviating both environmental and energy issues.It is worth noting that suppressing detrimental side reactions,such as the generation of·O_(2)^(-),is a critical approach to enhancing H_(2)O_(2)production.Herein,a 2-fold interpenetrating 3D uranium-organic framework(YTU-W-1)was developed and introduced for photocatalytic H_(2)O_(2)production.The material demonstrates a different photocatalytic mechanism when employing uranyl as an initiator,as compared with the conventional semiconductor photocatalytic pathway involving photo-generated charge carriers.Benefiting from the strong hydrogen abstraction effect of the U≡O·and the direct one-step oxygen reduction pathway,YTU-W-1 exhibits enhanced photocatalytic performance for H_(2)O_(2)production with yield efficiency of 221μmol h^(-1)g^(-1).Furthermore,YTU-W-1 displays a high H_(2)O_(2)selectivity of 68%,confirmed by rotating ring-disk electrode(RRDE)measurement.DFTcalculations were used to elucidate the critical role of uranyl in the photocatalytic oxygen reduction reaction for H_(2)O_(2)production.This research introduces an innovative approach to photo-driven H_(2)O_(2)production,underscoring the potential for heterogeneous catalysts to engage in photocatalytic reactions independently of photogenerated charge carriers.
基金supported by the Intergovernmental International Cooperation of the National Key R&D Program of China(grant no.2022YFE0105300)the National Natural Science Foundation of China(grant nos.21825601,22306136,21790374,22176139,and 22206144)+4 种基金the China National Postdoctoral Program for Innovative Talents(grant no.BX2021206)the China Postdoctoral Science Foundation(grant no.2021M702390)the Natural Science Foundation of Jiangsu(grant no.BK20230510)the National Key R&D Program of China(grant no.2018YFB1900203)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Technetium-99m(99mTc)is the most used(>80%)radionuclide in the clinical nuclear diagnostic imaging procedure.The traditional approach to preparing 99mTc-based imaging agents utilizes stannous chloride(SnCl_(2))for the reduction of noncomplexing pertechnetate(^(99m)TcO_(4)^(−))to low-valent Tc[e.g.,Tc(IV)].This process,however,is difficult to control precisely and usually results in toxic SnCl_(2) residue and remaining 99mTc(VII),both of which are destructive to humans.Herein,we report a new strategy for preparing^(99m)TcO_(4)^(−)-labeled agents without adding any reductants.The deliberately designed nanoscale cationic polymeric network(SCU-CPN-3)shows excellent affinity for^(99m)TcO_(4)^(−)even at trace levels originating from the strong p-πinteraction with^(99m)TcO_(4)^(−).Impressively,record-fast labeling kinetics are observed,where almost quantitative labeling efficacy(>96%)can be achieved within 1 min,giving rise to a short labeling time and simple operation using a clinical kit.Both single-photon emission computed tomography(SPECT)images and ex vivo biodistribution of different tumor model analyses verify the potential feasibility of this strategy for tumor imaging.
基金funding support from the National Key R&D Program of China(grant nos.2021YFB3200400 and 2022YFE0105300)the New Cornerstone Science Foundation through the XPLORER PRIZE,the National Natural Science Foundation of China(grant nos.22276131,21825601,U21A20296,U1967217,12275190,U1932124,and 22206144)+2 种基金the Science Foundation of Jiangsu Province(grant no.BK20220026)the China-Portugal Joint Laboratory of Cultural Heritage Conservation Science(grant no.2021YFE0200100)Soochow University-Western University Centre for Synchrotron Radiation Research.
文摘Developing efficient adsorbents for radon(Rn)capture from the ambient environment is of paramount importance for public health.However,it poses a great challenge due to the chemical inertness and extremely low molar concentration of Rn in air.Herein,we report a zeolite imidazolate frameworkderived metallic carbon adsorbent(Zn@NPC)with record high Rn removal performance under ambient conditions.Upon one-step pyrolysis,the prepared Zn@NPC possesses pores with a preference for Rn and atomically dispersed Zn sites,achieving a high Rn removal efficiency that doubles in adsorption coefficient(9.47 L·g^(−1))and triples in adsorption kinetic coefficient(20.25 mL·g^(−1)·min^(−1))over the benchmark Rn adsorbent coconut activated charcoal.Density functional theory calculations elucidate the important role of the metal polarization effect,which cooperates with the pore size confinement effect to boost the overall Rn adsorption performance.This work launches a promising alternative for practical Rn capture.
基金supported by the National Key R&D Program of China(2021YFB3200400)the National Natural Science Foundation of China(21825601,21790374)+2 种基金the fellowship of China National Postdoctoral Program for Innovative Talents(BX20220223)the fellowship of China Postdoctoral Science Foundation(2022M710103)Jiangsu Postdoctoral Program for Excellence(2022ZB588)。
文摘Post-synthetic functionalization of covalent organic frameworks(COFs)is an alternative way to enhance and broaden their properties and potential applications.However,the chemical functionalization of COFs is a great challenge because traditional procedures are often time-and energy-consuming,while the crystallinity of COFs can be damaged under harsh conditions.Here we report the in-situ introduction of functional graft chains onto the skeleton of COFs during the synthesis process through the combination of radiation-induced synthesis and graft polymerization techniques under ^(60)Co gamma-ray radiation.The synthesis and functionalization of COFs are simultaneously accomplished in a chemical system under ambient conditions yielding a large number of different functionalized COFs.The obtained carboxyl-functionalized COFs exhibit excellent radioactive uranium removal capabilities from aqueous solution with fast uptake dynamics,high adsorption capacity,and excellent selectivity over other competing metal ions.
基金supported by grants from the National Natural Science Foundation of China(21825601,21790374,21906113,21727801)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The second example of tetravalent plutonium carboxyl-based organic framework,^(242)Pu(OH)[PO[(C_(6)H_(4))COO]_(3)]·H_(2)O,termed as PuTPO(TPO=tris(4-carboxylphenyl)-phosphineoxide),was reported in this work.A series of characterizations of PuTPO,such as X-ray crystallography and solid-state UV-Vis-NIR spectroscopy,were carried out to expatiate its structure and physicochemical properties.PuTPO is constructed by dimers of the plutonium-oxygen subunit of[Pu_(2)O_(16)].Characteristic peaks located at approximately 1100 nm can be considered to be the fingerprint peaks of tetravalent plutonium.While PuTPO can maintain high crystallinity within several months after synthesis,it exhibits a radiation-induced swelling effect probed by the expansion of cell parameter of b axis after self-irradiation fromα-decay of ^(242)Pu.This result enriches the inventory of tetravalent plutonium compounds and provides an insight into the irradiation resistance of metal-organic frameworks.
基金supported by National Natural Science Foundation of China (Nos. 21771061, U2001219, 52103225, 51973051 and 81961138010)the Outstanding Youth Fund of Heilongjiang Province (No. JQ 2020B002)National Key R&D Program of China(No. SQ2021YFE012298)。
文摘Developing highly efficient photocatalysts for selective oxidation of benzene to phenol is of great significance. However, it is still challenging to simultaneously achieve high conversion rate and selectivity.Herein, we demonstrate 99.9% of benzene photoconversion and 99.1% of phenol selectivity under the illumination of AM 1.5 for 12 h. For this purpose, an advanced CuO@CN photocatalyst has been fabricated by loading tubular carbon nitride(CN) with CuO nanoparticles thermally polymerized from Cu-based metal-organic frameworks(MOFs). The sluggish photocharge carrier recombination rate and the excellent stability indicate that the as-prepared nanocomposite is an ideal photocatalyst for benzene oxidation application. This work paves a new avenue for designing novel photocatalyst based on MOFs and carbon nitride materials.
基金The authors gratefully acknowledge the financial support from the National Key R&D Program of China(grant nos.2021YFB3200400 and 2018YFB1900203)the National Natural Science Foundation of China(grant nos.21825601,21790374,22176139,21906113,and 22176163)+2 种基金the Young Taishan Scholars Program(grant no.tsqn201909082)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(grant no.KYCX22_3212)This work is dedicated to Prof.Zhifang Chai on the occasion of his 80th birthday.
文摘Efficient adsorption of gaseous radioiodine is pivotal for the sustainable development of nuclear energy and the long-termradiation safety of the ecological system.However,state-of-the-art adsorbents(e.g.metal-organic frameworks and covalent-organic frameworks)currently under exploration suffer severely from limited adsorption capacity,especially under a real-world scenariowith extremely lowradioiodine concentration and elevated temperature.This mostly originates from the relatively weak sorption driving forces mainly determinedby the iodine-adsorbent interaction consistingof noncovalent interactionswith a small fraction of strong chemical bonding.Here,we document the discovery of an open metal-sulfide framework((NH_(4))_(2)(Sn_(3)S_(7)),donated as SCU-SnS)constructed by three different types of active sites as a superior iodine adsorbent.Benefiting from the ability of iodine for pre-enrichment into the framework by charge-balancing NH_(4)^(+)through N-H···I interaction,the efficient reduction of I^(2)affording I^(-)by S^(2-),and extremely high binding affinity between Sn_(4)^(+)and I^(-),SCU-SnS exhibit a record-breaking iodine adsorption capacity(2.12 g/g)under dynamic breakthrough conditions and the highest static capacity(6.12 g/g)among all reported inorganic adsorbents,both at 348 K.Its facile synthesis and low cost endow SCU-SnS with powerful application potential for the nuclear industry.
基金supported by the National Natural Science Foundation of China (21825601, 21790374, U1967217, 21906116, 22176139, 21906114)the National Key R&D Program of China (2018YFB1900203)+2 种基金the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_3212)the Postdoctoral Science Foundation of China (2021M692346, 2021M702390)the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (WDZC202102)
文摘Platinum recovery from waste electrical and electronic equipment(WEEE) in highly acidic solutions is significant to the electronics industry and environmental remediation. However, the lack of ingenious design and synergetic coordination gives rise to unsatisfied PtCl_(4)^(2-)extraction capacities and selectivities in most previously reported adsorbents(e.g., polymeric and inorganic materials). Herein, we proposed a synergistic strategy that realizes highly selective PtCl_(4)^(2-)uptake through first-and second-sphere coordinations. The proof-of-concept imine-linked covalent organic framework(SCU-COF-3) was found to chelate Pt Cl42-via the direct N…Pt coordination and the synergistically interlaminar N–H…Cl hydrogen bonds, which was disclosed by the comprehensive analysis of extended X-ray adsorption fine structure(EXAFS) characterizations and density functional theory(DFT) calculations. The unique adsorption mechanism imparts a superior adsorption capacity(168.4 mg g-1)and extraordinary Pt(II) selectivity to SCU-COF-3 under static conditions. In addition, SCU-COF-3 exhibits an upgraded distribution coefficient of 1.62 × 10^(5)mL· g^(-1), one order of magnitude higher than those of reported natural adsorbents. Specifically, SCU-COF-3 can extract PtCl_(4)^(2- )quantitatively from a simulated acidic waste solution coexisting with other 12 competitive ions, suggesting its promising application in practical scenarios.
基金supported by the Science Challenge Project (TZ2016004)the National Natural Science Foundation of China (21836001, 21876048)
文摘With the development of nuclear energy, large amounts of radionuclides are inevitably released into the natural environment. It is necessary to eliminate radionuclides from wastewater for the protection of environment. Nanomaterials have been considered as the potential candidates for the effective and selective removal of radionuclides from aqueous solutions under complicated conditions because of their high specific surface area, large amounts of binding sites, abundant functional groups, pore-size controllable and easily surface modification. This review mainly summarized the recent studies for the synthesis, fabrication and surface modification of novel nanomaterials and their applications in the efficient elimination and solidification of radionuclides,and discussed the interaction mechanisms from batch experiments, spectroscopy analysis and theoretical calculations. The sorption capacities with other materials, advantages and disadvantages of different nanomaterials are compared, and at last the perspective of the novel nanomaterials is summarized.
基金supported by the National Natural Science Foundation of China(21790374,21825601,21806117,21906114,22006108)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the National Key R&D Program of China(2018YFB1900203)。
文摘^(99)Tc is a long-lived radionuclide present in large amounts as TcO_(4)^(-)-anion in used nuclear fuel.Its removal from the waste stream is highly desirable because of its interference capability with actinide separation and its volatile nature during the nuclear waste vitrification process.Despite the progress achieved in the past few years,the design of anion-exchange materials with optimized Tc uptake property and improved stability under the extreme condition is still a research goal beneficial for reducing the volume of secondary radioactive solid waste generated during the waste partitioning process.However,their design philosophy remains elusive,with challenges coming from charge repulsion,steric hindrance,and insufficient reactive sites within the materials.Herein,we present a design philosophy of cationic polymer network materials for TcO_(4)^(-)separation by systematic precursor screening and structure prediction.This affords an optimized material,SCU-CPN-2(SCU=Soochow University),with extremely high positive charge density while maintaining high radiation resistance.SCU-CPN-2 exhibits a record high adsorption capacity1,467 mg/g towards the surrogate ReO_(4)^(-)compared to all anion-exchange materials reported up to date.In addition to ultrafast adsorption kinetics,SCU-CPN-2 has remarkable selectivity over nitrate and sulfate,and facile recyclability.
基金the National Natural Science Foundation of China(21906113,21561018,21790374,and 22066014)the Priority Academic Pro-gram Development of Jiangsu Higher Education Institutions(PAPD)the Applied Basic Research Foundation of Yunnan Province(2017FH001-023).
文摘Main observation and conclusion Two new uranium(VI)phosphonate compounds,namely K_(8)[N(C_(2)H_(5))_(4)]_(2)(UO_(2))_(17)(H_(2)O)_(4)[CH_(2)(PO_(3))_(2)]_(8)[CH_(2)(PO_(3))(PO_(3)H)]_(4)·16(H_(2)O)(1)and[N(C_(2)H_(5))_(4)]_(4)(H_(3)O)_(2)(UO_(2))_(10)[CH_(2)(PO_(3))_(2)]_(5)[CH_(2)(PO_(3))(PO_(3)H)]_(2)·10H_(2)O(2),have been synthesized under mild hydro/solvothermal condition.The structural analysis of the two compounds reveals that they both contain all three typical coordination geometries of the U(VI)ions,including UO;tetragonal,UO,pentagonal,and UOg hexagonal bipyramids.Moreover,compound 1 displays a tempera-ture-induced single crystal to single crystal phase transformation as confirmed by the Single-crystal X-ray diffraction data collected at different temperatures.Temperature-dependent fluorescence spectra presented herein illustrate the perturbation of the electronic structure of uranyl centers.
基金funding support from the Science Challenge Project(TZ2016004)the National Natural Science Foundation of China(21825601,21790374,21806118,and 21727801)+1 种基金The computational work was financially supported by the Foundation of President of China Academy of Engineering Physics(no.YZJJSQ2017072)by the National Natural Science Foundation of China(21590792,21433005,and 21701006).
文摘Crystalline coordination complexes of actinides,especially in atypical oxidation states,are not only fundamentally important for expanding the notably limited knowledge on the bonding nature of actinides but could also provide critical information toward the development of nuclear fuel cycle,waste management,and national security.Plutonium(Pu)is the only element in the periodic table that could exist in four oxidation states in aqueous solutions simultaneously.
基金the National Natural Science Foundation of China (Nos.21790374,21790370,21761132019, 21806118)the Science Challenge Project (No.TZ2016004)+1 种基金a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the "Young Thousand Talented Program"in China.
文摘Summary of main observation and conclusion We present a new method for generating europium oxalate compounds by decomposing of N-methyl 2-pyrrolidone in HNO3 media.The reaction exhibits high selectivity towards Eu^3+ over UO2^2+,which suggests that these conditions could be applied to a selective crystallization based separation system for trivalent lanthanides and hexavalent actinides.
基金supported by grants from the National Natural Science Foundation of China(Nos.21976127,U2167222,21790370,22106116)the Natural Science Foundation of Jiangsu Province(No.BK20190044,BK20210736)+1 种基金funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)China Postdoctoral Science Foundation(No.2020M681716)。
文摘Internal contamination of actinides has led to significant health hazards to the public and workers in the context of nuclear power plant accidents,uranium ore mining,and reprocessing of the used fuel.An effective sequestering agent that is able to remove accidentally incorporated actinides in vivo with low toxicity is always in urgent need.The molecular decorporation ligands have been the most widely researched agents for the past few decades,while preliminary studies of functionalized nanoparticles have shown their clear advantages in metal binding selectivity,toxicity,and oxidative stress alleviation.Herein,the state-of-the-art of those two types of decorporation agents is presented with special attention being paid on the correlation between the solution and solid-state chemistry of those agents with actinides and the corresponding decorporation efficacies.
基金supported by the grants from the National Natural Science Foundation of China(Nos.21825601,21790374,and 21806117)。
文摘Separation of the minor actinides(Am and Cm)from lanthanides in high-level liquid wastes(HLLW)is one of the most challenging chemical separation tasks known owing to their chemical similarities and is highly significant in nuclear fuel reprocessing plants because it could practically lead to sustainable nuclear energy by closing the nuclear fuel cycle.The solid phase extraction is proposed to be a possible strategy but all reported sorbent materials severely suffer from limited stability and/or efficiency caused by the harsh conditions of high acidity coupled with intense irradiation.Herein,a phenanthroline-based polymeric organic framework(PhenTAPB-POF)was designed and tested for the separation of trivalent americium from lanthanides for the first time.Due to its fully conjugated structure,PhenTAPB-POF exhibits previously unachieved stability under the combined extreme conditions of strong acids and high irradiation field.The americium partitioning experiment indicates that PhenTAPB-POF possesses an ultrahigh adsorption selectivity towards Am(Ⅲ)over lanthanides(e.g.,SFAm(Ⅲ)/Eu(Ⅲ)=3326)in highly acidic simulated HLLW and relatively fast adsorption kinetics in both static and dynamic experiments.Am(Ⅲ)can be almost quantitatively eluted from the PhenTAPB-POF packed-column using a concentrated nitric acid elution.The high stability and superior separation performance endow PhenTAPB-POF with the promising alternative for separating minor actinides over lanthanides from highly acidic HLLW streams.
基金supported bygrants fromthe National Natural Science Foundation of China(Nos.21976127,21790370,22106116,U2167222)the Natural Science Foundation of Jiangsu Province(Nos.BK20190044,BK20210736)+2 种基金a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the China Postdoctoral Science Foundation(No.2020M681716)the Undergraduate Training Program for Innovation and Entrepreneurship of Soochow University(No.202010285055Z).
文摘The environmental contamination of uranium will occur in scenarios such as nuclear accidents and leakage from nuclear waste storage sites,which eventually leads to the internal uranium exposure of people,causing consequential injuries of renal failure,osteosarcoma,etc.The development of uranyl specific chelating agents that could sequester uranium in vivo is in urgent need and is important for the safe and efficient development of nuclear industry.Metal organic frameworks(MOFs)already serve as efficient uranium depletion materials in solutions of a wide range of pH and ionic strength for nuclear fuel recycling,uranium extraction from seawater,as well as environmental decontamination.Herein,a chromium-based nano-metal organic framework(nano-MOF)functionalized interiorly with 3,2-HOPO ligands,MIL-101-HOPO,is rationally synthesized.In vitro adsorption experiments show that MIL-101-HOPO exhibits high adsorption selectivity and fast adsorption kinetics for uranyl.The results of in vivo uranyl decorporation assays reveal that MIL-101-HOPO with the decoration of HOPO ligands on the interior wall exhibits significantly increased uranyl removal ratio in kidneys comparing to the pristine nMOFs,and is more effective than the clinically used ZnNa_(3)-DTPA.All those results corroborate the interior functionalization of MOFs as an efficient strategy to develop promising uranyl decorporation agents.
基金supported by grants from the National Natural Science Foundation of China(21825601,21790374,21906113,21727801)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘We reported the synthesis,single crystal structure,and solid-state UV-Vis-NIR spectroscopy of a new transplutonium metal-organic framework(MOFs),Am(H_(2)O)[PO[(C6H4)COO]_(3)],denoted as AmTPO(TPO=tris(4-carboxylphenyl)-phosphineoxide).AmTPO forms a three-dimensional metal-organic framework structure with americium dimers as the secondary building unit.Clear 5f→5f transi-tions attributed to trivalent americium was observed in the absorption spectrum of AmTPO ranging from 300 to 1200 nm.Notably,AmTPO can maintain the crystallinity with no observable structural degradation within several months after being synthesized,re-vealing a long-term radiation resistance of this structure and the potential application of MOFs as a platform for nuclear waste dis-posal.
文摘Prof.Zhifang Chai,born in October 1942,is a radioanalytical chemist working at the Institute of High Energy Physics,Chinese Academy of Sciences and Soochow University.He graduated from Fudan University in 1964.As an Alexander von Humboldt Foundation fellow,he worked at Cologne University,Germany from1980 to 1982.
基金the Young Taishan Scholars Program(tsqn201909082,tsqn201909087)the National Natural Science Foundation of China(21825601,21790370,21790374)+1 种基金the Top Discipline in Materials Science of Shandong Provincethe Natural Science Foundation of Shandong Province(ZR201910290031)。
文摘Open metal site(OMS)seated in a luminescent lanthanide(Ln)metal center offers an opportunity for rationally tuning the spectroscopic behavior of lanthanide-organic frameworks aiming for a wide range of sensing applications.However,given the spherical nature of common coordination geometries of trivalent lanthanides and the generally strong Ln–O bonds,the lanthanide based OMS is rarely reported and difficult to be functionalized.We report here a unique europium-organic framework containing abundant quasi-OMS that is protected by an abnormal weak Eu–O bond.These quasi-OMSs offer reversible direct binding sites for water molecules probed by X-ray crystallography,leading to sensitive,visible,and ratiometric luminescent sensing toward humidity and water content in organic solvents.The specific recognition of water based on quasi-luminescentOMSs gives rise to a superior water detection limit down to 0.0003%v/v,which is one order of magnitude lower than that of Karl Fischer method.