Amorphous materials are attractive candidates for fabricating the superconducting nanowire single-photon detectors(SNSPDs) due to their superior tolerance and scalability over crystalline niobium nitride. However, the...Amorphous materials are attractive candidates for fabricating the superconducting nanowire single-photon detectors(SNSPDs) due to their superior tolerance and scalability over crystalline niobium nitride. However, the reduced superconducting transition temperature degenerates both operating temperature and saturation efficiency. Herein, the SNSPD(6.5 nm thickness and 50 nm width) based on the amorphous Mo0.8Si0.2 film with a high optical absorption coefficient demonstrates close-to-unity intrinsic detection efficiency for 1550 nm photons from 75 m K to 2.2 K. Further, a high-performance array SNSPD with optimized 90 nm-width wires is also demonstrated. As-fabricated uniform 4-pixel SNSPD exhibits a saturation plateau for the photon counts at 2.2 K,which overcomes the limitation of operation at low temperature(< 1 K) for traditional amorphous SNSPDs.Coupled with superior intrinsic quantum efficiency, highly efficient photon counts, and low dark count ratio, this detector paves a way for achieving high efficiency and superior yield for large array systems.展开更多
基金National Key Research and Development Program of China (2017YFA0304002)National Natural Science Foundation of China (12033002, 62071218, 61521001, 62071214, 61801206, 11227904)+5 种基金Key-Area Research and Development Program of Guangdong Province(2020B0303020001)Fundamental Research Funds for the Central UniversitiesPriority Academic Program Development of Jiangsu Higher Education InstitutionsRecruitment Program for Young ProfessionalsQing Lan ProjectJiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Waves。
文摘Amorphous materials are attractive candidates for fabricating the superconducting nanowire single-photon detectors(SNSPDs) due to their superior tolerance and scalability over crystalline niobium nitride. However, the reduced superconducting transition temperature degenerates both operating temperature and saturation efficiency. Herein, the SNSPD(6.5 nm thickness and 50 nm width) based on the amorphous Mo0.8Si0.2 film with a high optical absorption coefficient demonstrates close-to-unity intrinsic detection efficiency for 1550 nm photons from 75 m K to 2.2 K. Further, a high-performance array SNSPD with optimized 90 nm-width wires is also demonstrated. As-fabricated uniform 4-pixel SNSPD exhibits a saturation plateau for the photon counts at 2.2 K,which overcomes the limitation of operation at low temperature(< 1 K) for traditional amorphous SNSPDs.Coupled with superior intrinsic quantum efficiency, highly efficient photon counts, and low dark count ratio, this detector paves a way for achieving high efficiency and superior yield for large array systems.