期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Balancing electron transfer and intermediate adsorption ability of metallic Ni-Fe-RE-P bifunctional catalysts via 4f-2p-3d electron interaction for enhanced water splitting
1
作者 Hong-Rui Zhao Cheng-Zong Yuan +8 位作者 Chenliang Zhou Wenkai Zhao Lunliang Zhang Cong-Hui Li Lei Xin Fuling Wu shufeng ye Xiaomeng Zhang Yunfa Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期458-465,共8页
Balancing electron transfer and intermediate adsorption ability of bifunctional catalysts via tailoring electronic structures is crucial for green hydrogen production,while it still remains challenging due to lacking ... Balancing electron transfer and intermediate adsorption ability of bifunctional catalysts via tailoring electronic structures is crucial for green hydrogen production,while it still remains challenging due to lacking efficient strategies.Herein,one efficient and universal strategy is developed to greatly regulate electronic structures of the metallic Ni-Fe-P catalysts via in-situ introducing the rare earth(RE)atoms(Ni-Fe-RE-P,RE=La,Ce,Pr,and Nd).Accordingly,the as-prepared optimal Ni-Fe-Ce-P/CC self-supported bifunctional electrodes exhibited superior electrocatalytic activity and excellent stability with the low overpotentials of 247 and 331 mV at 100 mA cm^(-2) for HER and OER,respectively.In the assembled electrolyzer,the Ni-Fe-Ce-P/CC as bifunctional electrodes displayed low operation potential of 1.49 V to achieve a current density of 10 mA cm^(-2),and the catalytic performance can be maintained for 100 h.Experimental results combined with density functional theory(DFT)calculation reveal that Ce doping leads to electron decentralization and crystal structure distortion,which can tailor the band structures and d-band center of Ni-Fe-P,further increasing conductivity and optimizing intermediate adsorption energy.Our work not only proposes a valuable strategy to regulate the electron transfer and intermediate adsorption of electrocatalysts via RE atoms doping,but also provides a deep under-standing of regulation mechanism of metallic electrocatalysts for enhanced water splitting. 展开更多
关键词 RE atoms Electron transfer Adsorption energy Oxygen evolution Hydrogen evolution
下载PDF
Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate 被引量:7
2
作者 Cuicui Lü Yongliang Wang +5 位作者 Peng Qian Ya Liu Guoyan Fu Jian Ding shufeng ye Yuanfa Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第9期1814-1821,共8页
Copper tailings constitute a large proportion of mine wastes. Some of the copper tailings can be recycled to recover valuable minerals. In this paper, a copper tailing was studied through the chemical analysis method,... Copper tailings constitute a large proportion of mine wastes. Some of the copper tailings can be recycled to recover valuable minerals. In this paper, a copper tailing was studied through the chemical analysis method, Xray diffraction and scanning electron microscope-energy dispersive spectrum. It turned out that chalcopyrite(Cu) and pyrite(S) were the main recoverable minerals in the tailing. In order to separate chalcopyrite from pyrite in low pulp pH, ammonium humate(AH) was singled out as the effective regulator. The depression mechanism of AH on the flotation of pyrite was proved by FTIR spectrum and XPS spectrum, demonstrating that there was a chemical adsorption between AH and pyrite. By Response Surface Methodology(RSM), the interaction between AH, pulp pH and iso-butyl ethionine(Z200) was discussed. It was illustrated that the optimal dosage of AH was 1678 g·t^(-1) involving both the recovery of Cu and S. The point prediction by RSM and the closed-circuit flotation displayed that the qualified Cu concentrate and S concentrate could be obtained from the copper tailing.The study indicated that AH was a promising pyrite depressor in the low pulp pH from copper tailings. 展开更多
关键词 黄铜矿 黄铁矿 跟踪 扫描电子显微镜 分离 化学分析方法 射线衍射
下载PDF
有色金属工业低碳技术分析与思考 被引量:10
3
作者 郑诗礼 叶树峰 +6 位作者 王倩 马淑花 王志 孙峙 乔珊 仉小猛 张懿 《过程工程学报》 CAS CSCD 北大核心 2022年第10期1333-1348,共16页
有色金属工业减碳是工业过程减碳的重要抓手。本工作综述了有色金属工业碳排放现状和特点,在此基础上提出了有色金属工业尤其是重点冶炼行业的低碳技术路径。分析表明,铝冶炼行业是有色金属工业二氧化碳减排的核心,预计2025年有色金属... 有色金属工业减碳是工业过程减碳的重要抓手。本工作综述了有色金属工业碳排放现状和特点,在此基础上提出了有色金属工业尤其是重点冶炼行业的低碳技术路径。分析表明,铝冶炼行业是有色金属工业二氧化碳减排的核心,预计2025年有色金属工业将实现碳达峰,碳达峰时二氧化碳排放量为7.5亿吨;有色金属工业减碳技术路径主要包括清洁能源替代、发展先进的低碳技术与装备、金属再生利用及碳捕集利用(CCU)等,其中金属再生利用是有色金属工业支撑实现国家“双碳”目标的重要路径。 展开更多
关键词 有色金属工业 碳达峰 碳中和 低碳技术 铝冶炼
原文传递
Coastal blue carbon: Concept, study method, and the application to ecological restoration 被引量:12
4
作者 Jianwu TANG shufeng ye +5 位作者 Xuechu CHEN Hualei YANG Xiaohong SUN Faming WANG Quan WEN Shaobo CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第6期637-646,共10页
Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants(including salt marsh,mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plant... Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants(including salt marsh,mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plants and microbes; and stored in nearshore sediments and soils; as well as the carbon transported from the coast to the ocean and ocean floor. The carbon sequestration capacity per unit area of coastal blue carbon is far greater than that of the terrestrial carbon pool. The mechanisms and controls of the carbon sink from salt marshes, mangroves, seagrasses, the aquaculture of shellfish and macroalgae, and the microbial carbon pump need to be further studied. The methods to quantify coastal blue carbon include carbon flux measurements, carbon pool measurements, manipulative experiments, and modeling. Restoring, conserving, and enhancing blue carbon will increase carbon sinks and produce carbon credits, which could be traded on the carbon market. The need to tackle climate change and implement China's commitment to cut carbon emissions requires us to improve studies on coastal blue carbon science and policy. The knowledge learned from coastal blue carbon improves the conservation and restoration of salt marshes,mangroves, and seagrasses; enhances the function of the microbial carbon pump; and promotes sustainable aquaculture, such as ocean ranching. 展开更多
关键词 学习方法 沿海 浮游植物 生态 微生物 相互作用 气候变化
原文传递
Removal of cyanide adsorbed on pyrite by H_2O_2 oxidation under alkaline conditions 被引量:9
5
作者 Yubo Tu Peiwei Han +4 位作者 Lianqi Wei Xiaomeng Zhang Bo Yu Peng Qian shufeng ye 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第4期287-292,共6页
Large amounts of cyanide tailings are produced during the cyanidation process in gold extraction,which are hazardous solid wastes due to the toxic cyanide.Pyrite is one of the main minerals in cyanide tailings.The rem... Large amounts of cyanide tailings are produced during the cyanidation process in gold extraction,which are hazardous solid wastes due to the toxic cyanide.Pyrite is one of the main minerals in cyanide tailings.The removal of cyanide adsorbed on pyrite by H_2O_2 oxidation under alkaline conditions was investigated in this study.It was found that the removal efficiency was positively correlated with pH from 5 to 12,but remained almost constant when pH was higher than 12.The highest cyanide removal efficiency of 91.10% was achieved by adding no less than 0.6 wt.% of H_2O_2.Cyanide removal was positively correlated with the CN^-adsorption amount between 1.06 and 8.5 mg/g,and temperature between 25 and 85°C.The removal of cyanide adsorbed on pyrite by H_2O_2 oxidation under alkaline conditions was due to the oxidation of pyrite.Hexacyanoferrate,thiocyanate and sulfate were generated with mole ratios of about 2.03:1.12:3.17 during the cyanide removal.?2018 The Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences. 展开更多
关键词 CYANIDE REMOVAL PYRITE H2O2 OXIDATION ALKALINE conditions
原文传递
Preparation and characterization of a novel hybrid chelating material for effective adsorption of Cu(Ⅱ)and Pb(Ⅱ) 被引量:2
6
作者 Ya Liu Peng Qian +4 位作者 Yang Yu Bo Yu Yongliang Wang shufeng ye Yunfa Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第5期224-236,共13页
The discharge of heavy metal ions such as Cu^2+and Pb^2+poses a severe threat to public health and the environment owing to their extreme toxicity and bioaccumulation through food chains Herein, we report a novel or... The discharge of heavy metal ions such as Cu^2+and Pb^2+poses a severe threat to public health and the environment owing to their extreme toxicity and bioaccumulation through food chains Herein, we report a novel organic–inorganic hybrid adsorbent, Al(OH)3-poly(acrylamide dimethyldiallylammonium chloride)-graft-dithiocarbamate(APD), for rapid and effectiv removal of Cu^2+and Pb^2+. In this adsorbent, the "star-like" structure of Al(OH)3 poly(acrylamide-dimethyldiallylammonium chloride) served as the support of dithiocarbamat(DTC) functional groups for easy access of heavy metal ions and assisted development of larg and compact floccules. The synthesized adsorbent was characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). APD was demonstrated to hav rapid adsorption kinetics with an initial rate of 267.379 and 2569.373 mg/(g·min) as well a superior adsorption capacities of 317.777 and 586.699 mg/g for Cu2+and Pb2+respectively. Th adsorption process was spontaneous and endothermic, involving intraparticle diffusion and chemical interaction between heavy metal ions and the functional groups of APD. To assess it versatility and wide applicability, APD was also used in turbid heavy metal wastewater, and performed well in removing suspended particles and heavy metal ions simultaneously through flocculation and chelation. The rapid, convenient and effective adsorption of Cu^2+and Pb^2+give APD great potential for heavy metal decontamination in industrial applications. 展开更多
关键词 Hybrid polymer DITHIOCARBAMATE Heavy metal ions ADSORPTION
原文传递
Effect of process conditions on the synthesis of carbon nanotubes by catalytic decomposition of methane 被引量:1
7
作者 Shuanglin Zhan Yajun Tian +4 位作者 Yanbin Cui Hao Wu Yonggang Wang shufeng ye Yunfa Chen 《China Particuology》 SCIE EI CAS CSCD 2007年第3期213-219,共7页
A new dual-composition catalyst based on Ni-Mo/MgO with high efficiency of producing carbon nanotubes (CNTs) from methane was reported recently. In the present article, with this type of catalyst, the impact of such... A new dual-composition catalyst based on Ni-Mo/MgO with high efficiency of producing carbon nanotubes (CNTs) from methane was reported recently. In the present article, with this type of catalyst, the impact of such experimental parameters as reaction temperature, reaction time, concentration of H2, flow rate ratio of CH4 to H2 on yield and graphitization were investigated, leading to the following optimal growth conditions: reaction time 60min, reaction temperature 900℃, CH4:H2 about 100:20mL/min, under which high-yield multi-walled CNTs bundles were synthesized. Raman measurement indicated that the as-synthesized product was well-graphitized, and the purity was estimated over 95% by TG-DSC analysis. In terms of the above results, an explanation of high-efficiency formation of CNTs bundles and the co-catalysis mechanism of Ni-Mo/MgO were suggested. 2007 Chinese Societv of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. 展开更多
关键词 Carbon nanotubes Catalytic decomposition Carbon yield Graphitization degree
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部