In recent years, superhydrophobic media has attracted tremendous attention due to its industrial applicability value, especially in anti-corrosion performance. The superhydrophobic coating, which has a robust and wate...In recent years, superhydrophobic media has attracted tremendous attention due to its industrial applicability value, especially in anti-corrosion performance. The superhydrophobic coating, which has a robust and water-repellent capacity, can catch the air to form several “airbags” on the substrate’s surface, isolating the corrosion media. Various superhydrophobic coating preparation technologies have been suggested, but each has its own set of flaws. On the other hand, electrodeposition, as a relatively mature industrial processing application, offers distinct advantages. However, until now, there have been few reviews on the electrodeposition preparation of anticorrosive superhydrophobic coatings. Therefore, the author has described several fabrication techniques based on superhydrophobic coatings in this review, including the advantages and disadvantages. Superhydrophobic coatings conventional concepts and wettability, as well as the model wetting concepts, have been reviewed. The coating processing status and the corrosion-resistant potential through the electrodeposition of metal and comparable composite are detailly encapsulated. Furthermore, electrodeposition parameters, including current density, crystal modifiers, and a deposition time of the coating morphology, are reported, following the ultrasonic-assisted, jet, pulse, and magnetic field-induced electrodeposition, respectively, as the recently developed technologies for preparing a coating. Finally, technology limitation is shown as well as the obstacles and prospects, and the improvement of the superhydrophobic coating’s durability as a prospects research focus has been recommended.展开更多
Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for...Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal.To solve this problem,we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB),a novel ternary material,to perform this task,wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties.The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar (11.06 mg/g,0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively).The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions.X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB,while ligand exchange was the adsorption mechanism that bound As(Ⅴ).展开更多
In order to effectively improve the degradation rate of diesel,a systematic analysis of the degradation mechanism used by immobilized bacteria is necessary.In the present study,diesel degradation mechanisms were asses...In order to effectively improve the degradation rate of diesel,a systematic analysis of the degradation mechanism used by immobilized bacteria is necessary.In the present study,diesel degradation mechanisms were assessed by analyzing permeability,biodegradation,adsorption kinetics,and molecular simulation.We found that bacteria immobilized on cinnamon shells and peanut shells degraded relatively high amounts of diesel(69.94%and 64.41%,respectively).The primary degradation pathways used by immobilized bacteria included surface adsorption,internal uptake,and biodegradation.Surface adsorption was dominant in the early stage of degradation,whereas biodegradation was dominant in later stages.The diesel adsorption rate of the immobilized bacteria was in agreement with the pseudo second-order kinetic model.The immobilized bacteria and diesel interacted through hydrogen bonds.展开更多
A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determin- ing the composition and characteristics of the plant communities involved. This study determined and char- acteri...A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determin- ing the composition and characteristics of the plant communities involved. This study determined and char- acterized the community of higher plants in the Chenier wetland of Bohai Bay using a combination of field surveys, quadrat approaches, and multivariate statistical analyses. This community was then compared to other adjacent wetlands (Tianjin, Qinhuangdao, Laizhouwan, Jiaozhou- wan, and Yellow River Delta wetland) located near the Huanghai and Bohai Seas using principal coordinate analysis (PCoA). Results showed a total of 56 higher plant species belonging to 52 genera from 20 families in Chenier wetland, the majority of which were dicotyledons. Single-species families were predominant, while larger families, including Gramineae, Compositae, Leguminosae, and Chenopodiaceae contained a higher number of species (cache〉6 species). Cosmopolitan species were also dominant with apparent intrazonality. Abundance (number of species) of temperate species was twice that of tropical taxa. Species number of perennial herbs, such as Gramineae and Compositae, was generally higher. Plant diversity in the Chenier wetland, based on the Shannon- Wiener index, was observed to be between the Qinhuang- dao and Laizhouwan indices, while no significant difference was found in other wetlands using the Simpson index. Despite these slight differences in diversity, PCoA based on species abundance and composition of the wetland flora suggest that the Bohai Chenier community was highly similar to the coastal wetlands in Tianjin and Laizhouwan, further suggesting that these two wetlands could be important breeding grounds and resources for the restoration of the plant ecosystem in the Chenier wetland.展开更多
文摘In recent years, superhydrophobic media has attracted tremendous attention due to its industrial applicability value, especially in anti-corrosion performance. The superhydrophobic coating, which has a robust and water-repellent capacity, can catch the air to form several “airbags” on the substrate’s surface, isolating the corrosion media. Various superhydrophobic coating preparation technologies have been suggested, but each has its own set of flaws. On the other hand, electrodeposition, as a relatively mature industrial processing application, offers distinct advantages. However, until now, there have been few reviews on the electrodeposition preparation of anticorrosive superhydrophobic coatings. Therefore, the author has described several fabrication techniques based on superhydrophobic coatings in this review, including the advantages and disadvantages. Superhydrophobic coatings conventional concepts and wettability, as well as the model wetting concepts, have been reviewed. The coating processing status and the corrosion-resistant potential through the electrodeposition of metal and comparable composite are detailly encapsulated. Furthermore, electrodeposition parameters, including current density, crystal modifiers, and a deposition time of the coating morphology, are reported, following the ultrasonic-assisted, jet, pulse, and magnetic field-induced electrodeposition, respectively, as the recently developed technologies for preparing a coating. Finally, technology limitation is shown as well as the obstacles and prospects, and the improvement of the superhydrophobic coating’s durability as a prospects research focus has been recommended.
基金supported by the National Key Research and Development Project of China(No.2016YFD0800706)the Science and Technology Project of Fujian Province of China(No.2018Y0080)the Science and Technology Project of Xiamen(No.3502Z20172026)
文摘Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal.To solve this problem,we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB),a novel ternary material,to perform this task,wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties.The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar (11.06 mg/g,0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively).The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions.X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB,while ligand exchange was the adsorption mechanism that bound As(Ⅴ).
基金supported by the scientific research fund project of the National Natural Science Foundation of China(grant numbers 51408347)the SDUST Graduate Technology Innovation Project(SDKDYC190321)+1 种基金the Major Science and Technology Innovation Projects in Shandong Province(2019JZZY020808)the Open Research Fund Program of Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta(Binzhou University)(2019KFJJ02).
文摘In order to effectively improve the degradation rate of diesel,a systematic analysis of the degradation mechanism used by immobilized bacteria is necessary.In the present study,diesel degradation mechanisms were assessed by analyzing permeability,biodegradation,adsorption kinetics,and molecular simulation.We found that bacteria immobilized on cinnamon shells and peanut shells degraded relatively high amounts of diesel(69.94%and 64.41%,respectively).The primary degradation pathways used by immobilized bacteria included surface adsorption,internal uptake,and biodegradation.Surface adsorption was dominant in the early stage of degradation,whereas biodegradation was dominant in later stages.The diesel adsorption rate of the immobilized bacteria was in agreement with the pseudo second-order kinetic model.The immobilized bacteria and diesel interacted through hydrogen bonds.
文摘A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determin- ing the composition and characteristics of the plant communities involved. This study determined and char- acterized the community of higher plants in the Chenier wetland of Bohai Bay using a combination of field surveys, quadrat approaches, and multivariate statistical analyses. This community was then compared to other adjacent wetlands (Tianjin, Qinhuangdao, Laizhouwan, Jiaozhou- wan, and Yellow River Delta wetland) located near the Huanghai and Bohai Seas using principal coordinate analysis (PCoA). Results showed a total of 56 higher plant species belonging to 52 genera from 20 families in Chenier wetland, the majority of which were dicotyledons. Single-species families were predominant, while larger families, including Gramineae, Compositae, Leguminosae, and Chenopodiaceae contained a higher number of species (cache〉6 species). Cosmopolitan species were also dominant with apparent intrazonality. Abundance (number of species) of temperate species was twice that of tropical taxa. Species number of perennial herbs, such as Gramineae and Compositae, was generally higher. Plant diversity in the Chenier wetland, based on the Shannon- Wiener index, was observed to be between the Qinhuang- dao and Laizhouwan indices, while no significant difference was found in other wetlands using the Simpson index. Despite these slight differences in diversity, PCoA based on species abundance and composition of the wetland flora suggest that the Bohai Chenier community was highly similar to the coastal wetlands in Tianjin and Laizhouwan, further suggesting that these two wetlands could be important breeding grounds and resources for the restoration of the plant ecosystem in the Chenier wetland.