High performance electro-optic modulator,as the key device of integrated ultra-wideband optical systems,have be-come the focus of research.Meanwhile,the organic-based hybrid electro-optic modulators,which make full us...High performance electro-optic modulator,as the key device of integrated ultra-wideband optical systems,have be-come the focus of research.Meanwhile,the organic-based hybrid electro-optic modulators,which make full use of the advant-ages of organic electro-optic(OEO)materials(e.g.high electro-optic coefficient,fast response speed,high bandwidth,easy pro-cessing/integration and low cost)have attracted considerable attention.In this paper,we introduce a series of high-perform-ance OEO materials that exhibit good properties in electro-optic activity and thermal stability.In addition,the recent progress of organic-based hybrid electro-optic devices is reviewed,including photonic crystal-organic hybrid(PCOH),silicon-organic hy-brid(SOH)and plasmonic-organic hybrid(POH)modulators.A high-performance integrated optical platform based on OEO ma-terials is a promising solution for growing high speeds and low power consumption in compact sizes.展开更多
The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the differe...The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 10^4nm/RIU, with an improvement of 2-3 orders of magnitude compared with the slot waveguide based microring biosensor.展开更多
基金the National Natural Science Foundation of China(No.62175267)the Beijing Municipal Natural Science Foundation(No.4192061)+1 种基金the Fundamental Research Funds for the Central Universities(2020MDJC13)the Beijing Talents Foundation(2018000021223ZK45)for the financial support.
文摘High performance electro-optic modulator,as the key device of integrated ultra-wideband optical systems,have be-come the focus of research.Meanwhile,the organic-based hybrid electro-optic modulators,which make full use of the advant-ages of organic electro-optic(OEO)materials(e.g.high electro-optic coefficient,fast response speed,high bandwidth,easy pro-cessing/integration and low cost)have attracted considerable attention.In this paper,we introduce a series of high-perform-ance OEO materials that exhibit good properties in electro-optic activity and thermal stability.In addition,the recent progress of organic-based hybrid electro-optic devices is reviewed,including photonic crystal-organic hybrid(PCOH),silicon-organic hy-brid(SOH)and plasmonic-organic hybrid(POH)modulators.A high-performance integrated optical platform based on OEO ma-terials is a promising solution for growing high speeds and low power consumption in compact sizes.
基金This work was supported in part by the International Science & Technology Cooperation Program of China (No. 2014DFG32590), National Natural Science Foundation of China (No. 61307040), National R&D Program (No. 2012AA040406), National Research Foundation of China (No. 6140450010305), Natural Science Foundation of Liaoning Province (No. 2014020002), and Fundamental Research Funds for the Central Universities (DUT 15ZD231 and DUT2015TD47).
文摘The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 10^4nm/RIU, with an improvement of 2-3 orders of magnitude compared with the slot waveguide based microring biosensor.