期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Two methods for separating the magnetospheric solar wind charge exchange soft X-ray emission from the diffuse X-ray background 被引量:1
1
作者 YingJie zhang TianRan Sun +5 位作者 JenniferACarter WenHao Liu Steve Sembay shuinai zhang Li Ji Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期119-132,共14页
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo... Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options. 展开更多
关键词 solar wind charge exchange(SWCX) ROSAT All-Sky Survey(RASS) soft X-ray X-ray imaging MAGNETOSPHERE
下载PDF
Scientific objectives of the Hot Universe Baryon Surveyor(HUBS) mission 被引量:1
2
作者 Joel Bregman Renyue Cen +51 位作者 Yang Chen Wei Cui Taotao Fang Fulai Guo Edmund Hodges-Kluck Rui Huang Luis C.Ho Li Ji Suoqing Ji Xi Kang Xiaoyu Lai Hui Li Jiangtao Li Miao Li Xiangdong Li Yuan Li Zhaosheng Li Guiyun Liang Helei Liu Wenhao Liu Fangjun Lu Junjie Mao Gabriele Ponti Zhijie Qu Chenxi Shan Lijing Shao Fangzheng Shi Xinwen Shu Lei Sun Mouyuan Sun Hao Tong Junfeng Wang Junxian Wang Q.Daniel Wang Song Wang Tinggui Wang Weiyang Wang Zhongxiang Wang Dandan Xu Haiguang Xu Heng Xu Renxin Xu Xiaojie Xu Yongquan Xue Hang Yang Feng Yuan shuinai zhang Yuning zhang Zhongli zhang Yuanyuan Zhao Enping Zhou Ping Zhou 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第9期134-178,共45页
The Hot Universe Baryon Surveyor(HUBS) is a proposed space-based X-ray telescope for detecting X-ray emissions from the hot gas content in our universe. With its unprecedented spatially-resolved high-resolution spectr... The Hot Universe Baryon Surveyor(HUBS) is a proposed space-based X-ray telescope for detecting X-ray emissions from the hot gas content in our universe. With its unprecedented spatially-resolved high-resolution spectroscopy and large field of view,the HUBS mission will be uniquely qualified to measure the physical and chemical properties of the hot gas in the interstellar medium, the circumgalactic medium, the intergalactic medium, and the intracluster medium. These measurements will be valuable for two key scientific goals of HUBS, namely to unravel the AGN and stellar feedback physics that governs the formation and evolution of galaxies, and to probe the baryon budget and multi-phase states from galactic to cosmological scales. In addition to these two goals, the HUBS mission will also help us solve some problems in the fields of galaxy clusters, AGNs, difuse X-ray backgrounds, supernova remnants, and compact objects. This paper discusses the perspective of advancing these fields using the HUBS telescope. 展开更多
关键词 X-ray telescopes Galactic halo X-ray sources
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部