Single-crystalline Ag_(2)Se complex nanostructures have been synthesized via a solvothermal route in which selenophene(C4H4Se)as a selenylation source reacts with AgNO3 at a temperature of 240°C.An orthorhombic p...Single-crystalline Ag_(2)Se complex nanostructures have been synthesized via a solvothermal route in which selenophene(C4H4Se)as a selenylation source reacts with AgNO3 at a temperature of 240°C.An orthorhombic phaseβ-Ag_(2)Se nanostructure was identified by X-ray diffraction(XRD),Raman spectroscopy,field emission scanning electron microscopy(FE-SEM),high resolution transmission electron microscopy(HRTEM),and photoluminescence(PL)spectroscopy.The wettability of the as-synthesizedβ-Ag_(2)Se nanostructure was studied by measurement of the water contact angle(CA).Static water CA values of over 150°were obtained,which can be attributed to theβ-Ag_(2)Se complex nanostructure having a combination of micro-and nanostructures.The superhydrophobic Ag_(2)Se nanostructure may find applications in self-cleaning.Additionally,the photocatalytic activity of the as-synthesizedβ-Ag_(2)Se nanostructure was evaluated by photodegradation of rhodamine B(RhB)dye under ultraviolet(UV)light irradiation.展开更多
基金support from the National Natural Science Foundation of China(Nos.20921001 and 20535020)the Innovation Method Fund of China(No.20081885189)the National High Technology Research and Development Program of China(No.2009AA03Z321).
文摘Single-crystalline Ag_(2)Se complex nanostructures have been synthesized via a solvothermal route in which selenophene(C4H4Se)as a selenylation source reacts with AgNO3 at a temperature of 240°C.An orthorhombic phaseβ-Ag_(2)Se nanostructure was identified by X-ray diffraction(XRD),Raman spectroscopy,field emission scanning electron microscopy(FE-SEM),high resolution transmission electron microscopy(HRTEM),and photoluminescence(PL)spectroscopy.The wettability of the as-synthesizedβ-Ag_(2)Se nanostructure was studied by measurement of the water contact angle(CA).Static water CA values of over 150°were obtained,which can be attributed to theβ-Ag_(2)Se complex nanostructure having a combination of micro-and nanostructures.The superhydrophobic Ag_(2)Se nanostructure may find applications in self-cleaning.Additionally,the photocatalytic activity of the as-synthesizedβ-Ag_(2)Se nanostructure was evaluated by photodegradation of rhodamine B(RhB)dye under ultraviolet(UV)light irradiation.