Petrochemical enterprises have become a major source of global greenhouse gas(GHG)emissions.Yet,due to the unavailability of basic data,there is still a lack of case studies to quantify GHG emissions and provide petro...Petrochemical enterprises have become a major source of global greenhouse gas(GHG)emissions.Yet,due to the unavailability of basic data,there is still a lack of case studies to quantify GHG emissions and provide petrochemical enterprises with guidelines for implementing energy conservation and emission reduction strategies.Therefore,this study conducted a life cycle assessment(LCA)analysis to estimate the GHG emissions of four typical petrochemical enterprises in China,using first-hand data,to determine possible emission reduction measures.The analytical data revealed that Dushanzi Petrochemical(DSP)has the highest GHG emission intensity(1.17 tons CO_(2)e/ton),followed by Urumqi Petrochemical(UP)(1.08 tons CO_(2)e/ton),Dalian Petrochemical(DLP)(average 0.58 tons CO_(2)e/ton)and Karamay Petrochemical(KP)(average 0.50 tons CO_(2)e/ton)over the whole life cycle.At the same time,GHG emissions during fossil fuel combustion were the largest contributor to the whole life cycle,accounting for about 77.31%–94.27% of the total emissions.In the fossil-fuel combustion phase,DSP had the highest unit GHG emissions(1.20 tons CO_(2)e),followed by UP(0.89 tons CO_(2)e).In the industrial production phase,DLP had the highest unit GHG emissions(average 0.13 tons CO_(2)e/ton),followed by UP(0.10 tons CO_(2)e/ton).During the torch burning phase,torch burning under accident conditions was the main source of GHG emissions.It is worth noting that the CO_(2) recovery stage has"negative value,"indicating that it will bring some environmental benefits.Further scenario analysis shows that effective policies and advanced technologies can further reduce GHG emissions.展开更多
基金supported by the Ministry of Ecology and Environment of the People’s Republic of China(No.2110105)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011757)the Graduate Innovation Project of China University of Petroleum(East China)(No.YCX2021055)。
文摘Petrochemical enterprises have become a major source of global greenhouse gas(GHG)emissions.Yet,due to the unavailability of basic data,there is still a lack of case studies to quantify GHG emissions and provide petrochemical enterprises with guidelines for implementing energy conservation and emission reduction strategies.Therefore,this study conducted a life cycle assessment(LCA)analysis to estimate the GHG emissions of four typical petrochemical enterprises in China,using first-hand data,to determine possible emission reduction measures.The analytical data revealed that Dushanzi Petrochemical(DSP)has the highest GHG emission intensity(1.17 tons CO_(2)e/ton),followed by Urumqi Petrochemical(UP)(1.08 tons CO_(2)e/ton),Dalian Petrochemical(DLP)(average 0.58 tons CO_(2)e/ton)and Karamay Petrochemical(KP)(average 0.50 tons CO_(2)e/ton)over the whole life cycle.At the same time,GHG emissions during fossil fuel combustion were the largest contributor to the whole life cycle,accounting for about 77.31%–94.27% of the total emissions.In the fossil-fuel combustion phase,DSP had the highest unit GHG emissions(1.20 tons CO_(2)e),followed by UP(0.89 tons CO_(2)e).In the industrial production phase,DLP had the highest unit GHG emissions(average 0.13 tons CO_(2)e/ton),followed by UP(0.10 tons CO_(2)e/ton).During the torch burning phase,torch burning under accident conditions was the main source of GHG emissions.It is worth noting that the CO_(2) recovery stage has"negative value,"indicating that it will bring some environmental benefits.Further scenario analysis shows that effective policies and advanced technologies can further reduce GHG emissions.